[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



Exercices de mathématiques - Exo7

3 Racines et factorisation. Exercice 6. 1. Factoriser dans R[X] et C[X] les polynômes suivants : a) X3 ?3 b) X12 ?1 c) X6 +1 d) X9 +X6 +X3 +1.



Exercices de 3ème – Chapitre 2 – Calcul littéral Énoncés Exercice 1

Factoriser (2 x?3)2?4 . 3. En déduire une factorisation de 4 x2?12 x+5 . Exercice 20. On a A = ( 



Exo7 - Exercices de mathématiques

Tous les exercices Exercice 126 Factorisation d'une application ... Expliquer comment opérer pour obtenir exactement 1 litre dans le seau. [000328].



Cours de mathématiques - Exo7

activement par vous-même des exercices sans regarder les solutions. Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité ...



Cours de mathématiques - Exo7

Racine d'un polynôme factorisation . SOMMAIRE. Cours et exercices de maths exo7.emath.fr ... ou d'infirmer — une hypothèse et de l'expliquer à autrui.



EXPRESSIONS NUMERIQUES I Calculer une expression À

Exercice 1 calculer les expressions Exercice 2 Calcule les expressions suivantes : ... Pour factoriser une expression on repère.



LATEX pour le prof de maths !

11 janv. 2021 Création d'exercices avec des nombres aléatoires . . . . . . . . . . . . . 48 ... Le codage des formules mathématiques est expliqué dans.



Fondamentaux des mathématiques 1

Il est possible de trouver des cours et des exercices dans de nombreux ouvrages En fait on factorise l'élément de la somme et on le multiplie par le ...



Factorisation - Supplement - Exercices plus difficiles

b)Factoriser A . Exercice 3 : Brevet des Collèges - Rennes - 86. On considère E = ( 2x - 3 )² - ( 



mathématiques au cycle 4 - motivation engagement

https://maths.ac-creteil.fr/IMG/pdf/brochure_cyc60fb.pdf

Exo7

Polynômes

Corrections de Léa Blanc-Centi.

1 Opérations sur les polynômes

Exercice 1Trouver le polynômePde degré inférieur ou égal à 3 tel que :

P(0) =1 etP(1) =0 etP(1) =2 etP(2) =4:

Exercice 21.Ef fectuerla di visioneuclidienne de AparB: (a)A=3X5+4X2+1;B=X2+2X+3 (b)A=3X5+2X4X2+1;B=X3+X+2 (c)A=X4X3+X2;B=X22X+4 (d)A=X57X4X29X+9;B=X25X+4 2.

Ef fectuerla di visionselon les puissances croissantes de AparBà l"ordrek(c"est-à-dire tel que le reste

soit divisible parXk+1) : (a)A=12X+X3+X4;B=1+2X+X2;k=2 (b)A=1+X32X4+X6;B=1+X2+X3;k=4 À quelle condition sura;b;c2Rle polynômeX4+aX2+bX+cest-il divisible parX2+X+1 ? 1. Déterminer les pgcd des polynômes sui vants: (a)X3X2X2 etX52X4+X2X2 (b)X4+X32X+1 etX3+X+1 (c)X5+3X4+X3+X2+3X+1 etX4+2X3+X+2 (d)nXn+1(n+1)Xn+1 etXnnX+n1 (n2N) 1

2.Calculer le pgcd Ddes polynômesAetBci-dessous. Trouver des polynômesUetVtels queAU+BV=

D. (a)A=X5+3X4+2X3X23X2 etB=X4+2X3+2X2+7X+6 (b)A=X62X5+2X43X3+3X22X etB=X42X3+X2X+1 1.

Montrer que si AetBsont deux polynômes à coefficients dansQ, alors le quotient et le reste de la division

euclidienne deAparB, ainsi que pgcd(A;B), sont aussi à coefficients dansQ. 2. Soit a;b;c2Cdistincts, et 0F actoriserles polynômes sui vants: a)X2+(3i1)X2i b)X3+(4+i)X2+(52i)X+23i Pour quelles valeurs deale polynôme(X+1)7X7aadmet-il une racine multiple réelle? Chercher tous les polynômesPtels queP+1 soit divisible par(X1)4etP1 par(X+1)4.

Indications.Commencer par trouver une solution particulièreP0avec l"une des méthode suivantes :

1. à partir de la relation de Bézout entre (X1)4et(X+1)4; 2. en considérant le polynôme déri véP00et en cherchant un polynôme de degré minimal.

Montrer quePconvient si et seulement si le polynômePP0est divisible par(X1)4(X+1)4, et en déduire

toutes les solutions du problème. Quels sont les polynômesP2C[X]tels queP0diviseP? 2

Exercice 10

Trouver tous les polynômesPqui vérifient la relation

P(X2) =P(X)P(X+1)

Soitn2N. Montrer qu"il existe un uniqueP2C[X]tel que 8z2CP z+1z =zn+1z n

Montrer alors que toutes les racines dePsont réelles, simples, et appartiennent à l"intervalle[2;2].

1. Soit P=Xn+an1Xn1++a1X+a0un polynôme de degrén>1 à coefficients dansZ. Démontrer que siPadmet une racine dansZ, alors celle-ci divisea0. 2. Les polynômes X3X2109X11 etX10+X5+1 ont-ils des racines dansZ? Soienta0;:::;andes réels deux à deux distincts. Pour touti=0;:::;n, on pose L i(X) =Õ 16j6n j6=iXaja iaj (lesLisont appeléspolynômes interpolateurs de Lagrange). CalculerLi(aj).

Soientb0;:::;bndes réels fixés. Montrer queP(X) =åni=0biLi(X)est l"unique polynôme de degré inférieur ou

égal ànqui vérifie:

P(aj) =bjpour toutj=0;:::;n:

Application.Trouver le polynômePde degré inférieur ou égal à 3 tel que

P(0) =1 etP(1) =0 etP(1) =2 etP(2) =4:

Indication pourl"exer cice4 NLe calcul du pgcd se fait par l"algorithme d"Euclide, et la "remontée" de l"algorithme permet d"obtenirUetV.Indication pourl"exer cice5 NCalculer pgcd(P;P0).Indication pourl"exer cice9 NSiP=P0QavecP6=0, regarder le degré deQ.Indication pourl"exer cice10 NMontrer que siPest un polynôme non constant vérifiant la relation, alors ses seules racines possibles sont 0 et

1.Indication pourl"exer cice11 NPour l"existence, preuve par récurrence surn. Pour les racines, montrer queP(x) =2cos(narccos(x=2)).4

Correction del"exer cice1 NOn cherchePsous la formeP(X) =aX3+bX2+cX+d, ce qui donne le système linéaire suivant à résoudre:

8>>< >:d=1 a+b+c+d=0 a+bc+d=2

8a+4b+2c+d=4

Après calculs, on trouve une unique solution :a=32 ,b=2,c=12 ,d=1 c"est-à-dire

P(X) =32

X32X212

X+1:Correction del"exer cice2 N1.(a) 3 X5+4X2+1= (X2+2X+3)(3X36X2+3X+16)41X47 (b)

3 X5+2X4X2+1= (X3+X+2)(3X2+2X3)9X2X+7

(c)X4X3+X2= (X22X+4)(X2+X2)7X+6 (d)X57X4X29X+9 = (X25X+4)(X32X214X63)268X+261 2. (a)

1 2X+X3+X4= (1+2X+X2)(14X+7X2)+X3(96X)

(b)

1 +X32X4+X6= (1+X2+X3)(1X2X4)+X5(1+2X+X2)Correction del"exer cice3 NLa division euclidienne deA=X4+aX2+bX+cparB=X2+X+1 donne

X

4+aX2+bX+c= (X2+X+1)(X2X+a)+(ba+1)X+ca

OrAest divisible parBsi et seulement si le resteR= (ba+1)X+caest le polynôme nul, c"est-à-dire si

et seulement siba+1=0 etca=0.Correction del"exer cice4 N1.L "algorithmed"Euclide permet de calculer le pgcd par une suite de di visionseuclidiennes.

(a)X52X4+X2X2= (X3X2X2)(X2X)+2X23X2 puisX3X2X2= (2X23X2)(12 X+14 )+34 X32 puis 2X23X2= (34 X32 )(83 X+43 Le pgcd est le dernier reste non nul, divisé par son coefficient dominant: pgcd(X3X2X2;X52X4+X2X2) =X2 (b)X4+X32X+1= (X3+X+1)(X+1)X24X puisX3+X+1= (X24X)(X+4)+17X+1 donc pgcd(X4+X32X+1;X3+X+1) =pgcd(X24X;17X+1) =1 carX24Xet 17X+1 n"ont pas de racine (même complexe) commune. 5 (c)X5+3X4+X3+X2+3X+1= (X4+2X3+X+2)(X+1)X31 puisX4+2X3+X+2= (X31)(X2)+2X3+2 pgcd(X5+3X4+X3+X2+3X+1;X4+2X3+X+2) =X3+1 (d)nXn+1(n+1)Xn+1 = (XnnX+n1)(nX(n+1))+n2(X1)2 Sin=1 alorsXnnX+n1=0 et le pgcd vaut(X1)2. On constate que 1 est racine de X nnX+n1, et on trouveXnnX+n1= (X1)(Xn1+Xn2++X2+X(n1)). Sin>2: 1 est racine deXn1+Xn2++X2+X(n1)et on trouve X n1+Xn2++X2+X(n1) = (X1)(Xn2+2Xn3++(n1)X2+nX+(n+1)), donc finalement(X1)2divise X nnX+n1 (on pourrait aussi remarquer que 1 est racine de multiplicité au moins deux de X nnX+n1, puisqu"il est racine de ce polynôme et de sa dérivée). Ainsi sin>2;pgcd(nXn+1(n+1)Xn+1;XnnX+n1) = (X1)2 2. (a) A=X5+3X4+2X3X23X2 etB=X4+2X3+2X2+7X+6 doncA=BQ1+R1avecQ1=X+1,R1=2X310X216X8 puisB=R1Q2+R2avecQ2=12 X+32 etR2=9X2+27X+18 et enfinR1=R2Q3avecQ3=29 X49

DoncD=X2+3X+2, et on obtient

9D=BR1Q2=B(ABQ1)Q2=AQ2+B(1+Q1Q2)

soit U=19 (Q2) =118 X16 V=19 (1+Q1Q2) =118 X2+19 X+518 (b)

On a A=BQ1+R1avecQ1=X2+1,R1=X2X1

puisB=R1Q2+R2avecQ2=X2X+1 etR2=X+2 et enfinR1=R2Q3+R3avecQ3=X1 etR3=1

DoncD=1, et on obtient

1=R1R2Q3=R1(BR1Q2)Q3=R1(1+Q2Q3)BQ3

= (ABQ1)(1+Q2Q3)BQ3 =A(1+Q2Q3)B(Q1(1+Q2Q3)+Q3) soit

U=1+Q2Q3=X3

V=Q1(1+Q2Q3)Q3=1+X+X3+X5Correction del"exer cice5 N1.Lorsqu"on ef fectuela di visioneuclidienne A=BQ+R, les coefficients deQsont obtenus par des

opérations élémentaires (multiplication, division, addition) à partir des coefficients deAetB: ils restent

donc dansQ. De plus,R=ABQest alors encore à coefficients rationnels. Alorspgcd(A;B)=pgcd(B;R)etpourl"obtenir, onfaitladivisioneuclidiennedeBparR(dontlequotient

et le reste sont encore à coefficients dansQ), puis on recommence... Le pgcd est le dernier reste non nul,

c"est donc encore un polynôme à coefficients rationnels. 6

2.Notons P1=pgcd(P;P0): commePest à coefficients rationnels,P0aussi et doncP1aussi. OrP1(X) =

(Xa)p1(Xb)q1(Xc)r1. En itérant le processus, on obtient quePr1(X) = (Xc)est à coefficients rationnels, doncc2Q. On remonte alors les étapes:Pq1(X) = (Xb)(Xc)rq+1est à coefficients rationnels, etXbaussi en tant que quotient dePq1par le polynôme à coefficients rationnels(Xc)rq+1, doncb2Q. De

même, en considérantPp1, on obtienta2Q.Correction del"exer cice6 N1.(a) X33= (X31=3)(X2+31=3X+32=3)oùX2+31=3X+32=3est irréductible surR. On cherche

ses racines complexes pour obtenir la factorisation surC: X

33= (X31=3)(X+12

31=3i2

35=6)(X+12

31=3+i2

35=6)
(b) P assonsà X121.z=reiqvérifiez12=1 si et seulement sir=1 et 12q0[2p], on obtient donc comme racines complexes leseikp=6(k=0;:::;11), parmi lesquelles il y en a deux réelles (1 et 1) et cinq couples de racines complexes conjuguées (eip=6ete11ip=6,e2ip=6ete10ip=6,e3ip=6ete9ip=6, e

4ip=6ete8ip=6,e5ip=6ete7ip=6), d"où la factorisation surC[X]:

X

121= (X1)(X+1)(Xeip=6)(Xe11ip=6)(Xe2ip=6)

(Xe10ip=6)(Xe3ip=6)(Xe9ip=6)(Xe4ip=6) (Xe8ip=6)(Xe5ip=6)(Xe7ip=6) Comme(Xeiq)(Xeiq) = (X22cos(q)X+1), on en déduit la factorisation dansR[X]: X

121= (X1)(X+1)(X22cos(p=6)X+1)

(X22cos(2p=6)X+1)(X22cos(3p=6)X+1) (X22cos(4p=6)X+1)(X22cos(5p=6)X+1) = (X1)(X+1)(X2p3X+1) (X2X+1)(X2+1)(X2+X+1)(X2+p3X+1) (c) Pour X6+1,z=reiqvérifiez6=1 si et seulement sir=1 et 6qp[2p], on obtient donc comme racines complexes lesei(p+2kp)=6(k=0;:::;5). D"où la factorisation dansC[X]: X

6+1= (Xeip=6)(Xe3ip=6)(Xe5ip=6)(Xe7ip=6)

(Xe9ip=6)(Xe11ip=6) Pour obtenir la factorisation dansR[X], on regroupe les paires de racines complexes conjuguées : X

6+1= (X2+1)(X2p3X+1)(X2+p3X+1)

(d)X9+X6+X3+1=P(X3)oùP(X) =X3+X2+X+1=X41X1: les racines dePsont donc les trois racines quatrièmes de l"unité différentes de 1 (i,i,1) et X

9+X6+X3+1=P(X3)

= (X3+1)(X3i)(X3+i) = (X3+1)(X6+1) On sait déjà factoriserX6+1, il reste donc à factoriser le polynômeX3+1= (X+1)(X2X+1), oùX2X+1 n"a pas de racine réelle. Donc X

9+X6+X3+1= (X+1)(X2X+1)(X2+1)

(X2p3X+1)(X2+p3X+1) Pour la factorisation surC: les racines deX2X+1 sonteip=3ete5ip=3, ce qui donne X

9+X6+X3+1= (X+1)(Xeip=3)(Xe5ip=3)

(Xeip=6)(Xe3ip=6)(Xe5ip=6) (Xe7ip=6)(Xe9ip=6)(Xe11ip=6) 7

2.(a) Pour X2+(3i1)X2i, on calcule le discriminant

D= (3i1)24(2i) =2i

et on cherche les racines carrées (complexes!) deD:w=a+ibvérifiew2=Dsi et seulement si w=1iouw=1+i. Les racines du polynômes sont donc12 ((3i1)(1i))etP(X) = (X+i)(X1+2i). (b) Pour X3+(4+i)X2+(52i)X+23i:1 est racine évidente, etP(X) = (X+1)(X2+(3+ i)X+23i). Le discriminant du polynômeX2+(3+i)X+23ivautD=18i, ses deux racines

carrées complexes sont(3+3i)et finalement on obtientP(X) = (X+1)(Xi)(X+3+2i).Correction del"exer cice7 NSoitx2R;xest une racine multiple dePsi et seulement siP(x) =0 etP0(x) =0:

P(x) =P0(x)0()(x+1)7x7a=0

7(x+1)67x6=0

()(x+1)x6x7a=0 en utilisant la deuxième équation (x+1)6=x6 ()x6=a (x+1)3=x3en prenant la racine carrée ()x6=a x+1=xen prenant la racine cubique qui admet une solution (x=12 ) si et seulement sia=164

.Correction del"exer cice8 N1.On remarque que si Pest solution, alorsP+1= (X1)4Aet par ailleursP1= (X+1)4B, ce qui

donne 1=A2 (X1)4+B2 (X+1)4. Cherchons des polynômesAetBqui conviennent: pour cela, on écrit la relation de Bézout entre(X1)4et(X+1)4qui sont premiers entre eux, et on obtient A2 =532 X3+58

X2+2932

X+12 B2 =532 X3+58

X22932

X+12

On a alors par construction

(X1)4A1=2

1+(X+1)4B2

=1+(X+1)4B etP0= (X1)4A1 convient. En remplaçant, on obtient après calculs : P 0=516

X72116

X5+3516

X33516

X 2. Si (X1)4diviseP+1, alors 1 est racine de multiplicité au moins 4 deP+1, et donc racine de multiplicité au moins 3 deP0: alors(X1)3diviseP0. De même(X+1)3diviseP0. Comme(X1)3 et(X+1)3sont premiers entre eux, nécessairement(X1)3(X+1)3diviseP0. Cherchons un polynôme de degré minimal : on remarque que les primitives de l(X1)3(X+1)3=l(X21)3=l(X63X4+3X21) 8 sont de la formeP(X)=l(17 X735 X5+X3X+a). SiPconvient, nécessairement 1 est racine deP+1 et1 est racine deP1, ce qui donnel(1635 +a) =1 etl(1635 +a) =1. D"oùla=0 et comme on cherchePnon nul, il fauta=0 etl=3516 . On vérifie que P

0(X) =3516

(17 X735

X5+X3X) =516

X72116

X5+3516

X33516

X

est bien solution du problème: le polynômeA=P0+1 admet 1 comme racine, i.e.A(1)=0, et sa dérivée

admet 1 comme racine triple doncA0(1)=A00(1)=A000(1)=0, ainsi 1 est racine de multiplicité au moins

4 deAet donc(X1)4diviseA=P+1. De même,(X+1)4diviseP1.

Supposons quePsoit une solution du problème. On note toujoursP0la solution particulière obtenue ci-dessus.

AlorsP+1 etP0+1 sont divisibles par(X1)4, etP1 etP01 sont divisibles par(X+1)4. AinsiP P

0= (P+1)(P0+1) = (P1)(P01)est divisible par(X1)4et par(X+1)4. Comme(X1)4et

(X+1)4sont premiers entre eux, nécessairementPP0est divisible par(X1)4(X+1)4. Réciproquement, siP=P0+(X1)4(X+1)4A, alorsP+1 est bien divisible par(X1)4etP1 est divisible par(X+1)4. Ainsi les solutions sont exactement les polynômes de la forme P

0(X)+(X1)4(X+1)4A(X)

oùP0est la solution particulière trouvée précédemment, etAun polynôme quelconque.Correction del"exer cice9 NLe polynôme nul convient. Dans la suite on suppose quePn"est pas le polynôme nul.

Notonsn=degPson degré. CommeP0diviseP, alorsPest non constant, doncn>1. SoitQ2C[X]tel que P=P0Q. Puisque deg(P0) =deg(P)1>0, alorsQest de degré 1. AinsiQ(X) =aX+baveca6=0, et donc

P(X) =P0(X)(aX+b) =aP0(X)(X+ba

Donc siz6=ba

et sizest racine dePde multipliciték>1, alorszest aussi racine deP0avec la même multiplicité, ce qui est impossible. Ainsi la seule racine possible dePestba Réciproquement, soitPun polynôme avec une seule racinez02C: il existel6=0,n>1 tels queP=

l(Xz0)n, qui est bien divisible par son polynôme dérivé.Correction del"exer cice10 NSiPest constant égal àc, il convient si et seulement sic=c2, et alorsc2 f0;1g.

Dans la suite on supposePnon constant. NotonsZl"ensemble des racines deP. On sait queZest un ensemble

non vide, fini.

Analyse

Siz2Z, alorsP(z) =0 et la relationP(X2) =P(X)P(X+1)impliqueP(z2) =0, doncz22Z. En itérant, on obtientz2k2Z(pour toutk2N). Sijzj>1, la suite(jz2kj)kest strictement croissante doncZcontient une

infinité d"éléments, ce qui est impossible. De même si 0

ce qui est impossible pour la même raison. Donc les éléments deZsont soit 0, soit des nombres complexes de

module 1. De plus, siP(z) =0, alors toujours par la relationP(X2) =P(X)P(X+1), on a queP((z1)2) =0 donc (z1)22Z. Par le même raisonnement que précédemment, alors ou bienz1=0 ou bienjz1j=1.quotesdbs_dbs47.pdfusesText_47
[PDF] Math exercice échantillonnage

[PDF] Math exercice échantillonnage SVP !!!! ;)

[PDF] Math exercice non compris pour lundi 20/02

[PDF] math exercice pithagore

[PDF] Math Exercice Problème Puissances

[PDF] Math exercice seconde

[PDF] Math exercice systéme

[PDF] Math exercices s

[PDF] math exo de 3ieme

[PDF] math exo hk

[PDF] math exo s

[PDF] math exo seconde

[PDF] math expressions litterales

[PDF] math facile 5eme fraction

[PDF] math facile 6ème fraction