[PDF] LIMITES DES FONCTIONS Yvan Monka – Académie de





Previous PDF Next PDF



Centrale PC 2020 Math 2 - Corrigé Fonction caractéristique dune

Centrale PC 2020 Math 2 - Corrigé I. Fonction caractéristique d'une variable aléatoire réelle ... + = Dgn par opérations sur les fonctions usuelles.



FONCTION DERIVÉE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION DERIVÉE. I. Dérivées des fonctions usuelles. Exemple : Soit la fonction f définie sur 



FONCTION EXPONENTIELLE

f ' = f f (0) = 1 exp(0) = 1. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 2. Remarque : On prouvera dans le paragraphe II. que la 



CONTINUITÉ DES FONCTIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Théorème : Une fonction dérivable sur un intervalle est continue sur cet intervalle.



LIMITES DES FONCTIONS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES DES FONCTIONS. Partie 1 : Limite d'une fonction à l'infini.



VARIATIONS DUNE FONCTION

On considère la représentation graphique la fonction : Page 4. 4 sur 11. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr a) Sur quel intervalle 



FONCTIONS POLYNÔMES DE DEGRÉ 2

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS POLYNÔMES DE DEGRÉ 2 est une fonction polynôme de degré 1 (fonction affine).



FONCTION INVERSE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Remarque : La courbe d'équation = de la fonction inverse appelée hyperbole de centre.



Partie 1 : Fonction dérivée

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. DÉRIVATION – Chapitre 2/2. Partie 1 : Fonction dérivée. Définition : La fonction qui à tout 



FONCTION LOGARITHME NEPERIEN

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION LOGARITHME. NEPERIEN. En 1614 un mathématicien écossais

1

LIMITES DES FONCTIONS

Partie 1 : Limite d'une fonction à l'infini

1) Limite infinie en ∞

Définition :

On dit que la fonction admet pour limite +∞ en +∞, si ()est aussi grand que l'on veut pourvu que soit suffisamment grand. Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

a pour limite +∞ lorsque tend vers +∞.

On a par exemple :

100
=100 =10000 1000
=1000 =1000000 Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que est suffisamment grand.

Remarques :

- Une fonction qui tend vers +∞ lorsque tend vers +∞ n'est pas nécessairement croissante. Par exemple : - Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales. 2

2) Limite finie en ∞

Définition :

On dit que la fonction admet pour limite en +∞,

si ()est aussi proche de que l'on veut, pourvu que soit suffisamment grand et on

note : lim Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

=2+ a pour limite 2 lorsque tend vers +∞.

On a par exemple :

100
=2+ =2,01 10000
=2+ =2,0001 Les valeurs de la fonction se resserrent autour de 2 dès que est suffisamment grand. La courbe de la fonction "se rapproche" de la droite d'équation =2 sans jamais la toucher.

Définition : Si lim

=, la droite d'équation = est appelée asymptote horizontale

à la courbe de la fonction en +∞.

3

Remarques :

• Lorsque tend vers +∞, la courbe de la fonction "se rapproche" de son asymptote. • On a une définition analogue en -∞.

3) Limites des fonctions de référence

Propriétés :

- lim =+∞, lim - lim =+∞, lim - lim - lim 1 =0, lim 1 =0 - lim =+∞, lim =0

Partie 2 : Limite d'une fonction en un réel A

1) Définition

Définition :

On dit que la fonction admet pour limite +∞ en ,

si () est aussi grand que l'on veut pourvu que soit suffisamment proche de .

Exemple :

La fonction définie par

1

3-

+1 a pour limite +∞ lorsque tend vers 3.

On a par exemple :

2,99 1

3-2,99

+1=101

2,9999

1

3-2,9999

+1=10001

Les valeurs de la fonction deviennent aussi

grandes que l'on veut dès que est suffisamment proche de 3.

La courbe de la fonction "se rapproche" de la

droite d'équation =3 sans jamais la toucher. 4

Définition : Si : lim

=+∞ ou lim =-∞, la droite d'équation = est appelée asymptote verticale à la courbe de la fonction .

2) Limite à gauche, limite à droite :

Exemple :

Considérons la fonction inverse définie sur ℝ par La fonction admet des limites différentes en 0 selon que : >0 ou <0. Si >0 : Lorsque tend vers 0, () tend vers +∞ et on note : lim =+∞ou lim

On parle de limite à droite de 0

Si <0 : Lorsque tend vers 0, () tend vers -∞ et on note : lim =-∞ ou lim

On parle de limite à gauche de 0.

Méthode : Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

On donne ci-dessous la représentation graphique de la fonction . a) Lire graphiquement les limites en -∞, en +∞, en -4 et en 5. b) Compléter alors le tableau de variations de . 5

Correction

a) lim =5 lim =5 La courbe de admet une asymptote horizontale d'équation =5 en -∞ et +∞. lim La courbe de admet une asymptote verticale d'équation =-4. lim =+∞ et lim La courbe de admet une asymptote verticale d'équation =5. 2) -∞-425+∞ -∞-425+∞ +∞+∞ +∞5

56-∞

6

Partie 3 : Opérations sur les limites

1) Utiliser les propriétés des opérations sur les limites

peut désigner +∞, -∞ ou un nombre réel. SOMME lim lim lim F.I.* * Forme indéterminée : On ne peut pas prévoir la limite éventuelle. PRODUIT ∞ désigne +∞ ou -∞ lim ∞ 0 lim lim F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. QUOTIENT ∞ désigne +∞ ou -∞ lim ≠0 0 lim ′≠0

0 ∞ ∞

0 lim ∞ 0 ∞ F.I. F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. Méthode : Calculer la limite d'une fonction à l'aide des formules d'opération

Vidéo https://youtu.be/at6pFx-Umfs

Déterminer les limites suivantes : a)lim

-5

3+

b) lim

1-2

-3

Correction

a) lim -5

3+

F lim -5=-∞ lim =+∞lim

3+

Comme limite d'un produit : lim

-5

3+

7 b) lim

1-2

-3 lim

1-2=1-2×3=-5

lim -3=0

Une limite de la forme "

» est égale à " ∞ ».

Donc, d'après la règle des signes, une limite de la forme "

» est égale à " +∞ ».

D'où, comme limite d'un quotient : lim

1-2

-3

2) Cas des formes indéterminée (non exigible)

Comme pour les suites, on rappelle que :

Les quatre formes indéterminées sont, par abus d'écriture : ∞-∞0×∞ Méthode : Lever une forme indéterminée à l'aide de factorisations (1) - NON EXIGIBLE

Vidéo https://youtu.be/4NQbGdXThrk

Calculer : lim

-3 +2 -6+1

Correction

lim -3 +2 -6+1=? • F lim -3 lim

2

On reconnait une forme indéterminée du type "∞-∞". • Levons l'indétermination en factorisant par le monôme de plus haut degré : -3 +2 -6+1= M-3+ 2 6 1 N •lim 2 =lim 6 2 =lim 1 3 =0.

Donc, par limite d'une somme :

lim -3+ 2 6 1 =-3 •P lim -3+ 2 6 1 =-3 lim 8

Donc, par limite d'un produit :

lim M-3+ 2 6 1

N=-∞

Soit : lim

-3 +2 -6+1=-∞. Méthode : Lever une forme indéterminée à l'aide de factorisations - NON EXIGIBLE

Vidéo https://youtu.be/8tAVa4itblc

Vidéo https://youtu.be/pmWPfsQaRWI

Calculer : a) lim

2

2 -5+1

6

2 -5 b) lim

3

2 +2

4-1

Correction

a) • En appliquant la méthode précédente pour le numérateur et le dénominateur cela

conduirait à une forme indéterminée du type " • Levons l'indétermination en factorisant les monômes de plus haut degré :

2

-5+1

6

-5 2- 0 6- 2- 0 6- • lim 5 =lim 1 2 =lim 5 2 =0.

Donc, comme limite de sommes :

lim 2- 5 1 =2etlim 6- 5 =6 • Donc, comme limite d'un quotient : lim 2- 0 6- 2 6 1 3

Soit : lim

2

2 -5+1

6

2 -5 1 b) • Il s'agit d'une forme indéterminée du type " • Levons l'indétermination en factorisant les monômes de plus haut degré :

3

+2

4-1

3+ 4-quotesdbs_dbs47.pdfusesText_47
[PDF] math fonction affine

[PDF] math fonctions et suites

[PDF] math fonctions urgent

[PDF] math forme factoriser

[PDF] math formule calcul

[PDF] Math fraction

[PDF] Math fraction ireeductible sous forme

[PDF] math fuseaux horaires

[PDF] math geometrie

[PDF] math help me

[PDF] math help me please

[PDF] Math identité remarquables 3 eme

[PDF] math in early childhood education articles

[PDF] Math in English : Probabilité

[PDF] math inéquation 3ème