[PDF] COUNTING LABELLED TREES reunir les elements d'un





Previous PDF Next PDF



CMS Math Camps Report Rapport des Camps mathématiques de la

Sujets: Jeux de maths la résolution de problèmes and les présentations sur différents sujets des mathématiques. « On a touché à beaucoup de domaines et 





IMO 2020 Solution Notes

and k different finishing points and a cable car which starts higher has the property that the arithmetic mean of the numbers on each pair of cards is.



Course Objectives 1. To understand the basic concepts of

Apply the knowledge in mathematics (algebra matrices



COURSES SCHEME & SYLLABUS

Write compile and debug programs in C language



Mental Discipline Theory and Mathematics Education

Some mental disciplinarians used slightly different labels for the faculties but the discussion by Brooks is representa- tive of mental discipline theory.



Series Convergence Tests Math 122 Calculus III

Math 122 Calculus III. D Joyce Fall 2012. Some series converge



COUNTING LABELLED TREES

reunir les elements d'un sujet interessant et de lecture tres agreable. nn- 3 different trees with n unlabelled nodes and n - 1 edges labelled.



Proceedings of the 13th International Conference on Technology in

10-Nov-2017 for ICT to penetrate mathematics classrooms is not new explained in many research by the "teacher barrier". Will it be different this time?



IB COURSE DESCRIPTIONS 2022-2024

dont les différentes formes littéraires et conventions de genres explorent les les maths et qui désirent approfondir le sujet dans un contexte plus pur.

"COUNTING

LABELLEDTREES

J.W.MOON

MadeandprintedinGreatBritainby

longueserie. avaientparusousformedelivre. inbookform. standardforotherstofollow. finitemathematicsorprobabilitytheory. encouragement.

Edmonton,Alberta

February,1970

1.Introduction

1.1Definitions

1.2PropertiesofTrees

1.3Summary

AssociatingSequenceswithTrees

2.1PriiferSequences

2.2TreeFunctions

2.4SpecialCases

,3.InductiveArguments

3.1SomeIdentities

3.2TreeswithaGivenDegreeSequence

3.4TheNumberofk-Trees

.3.5ForestsofTreeswithSpecifiedRoots

3.6ConnectedGraphswithOneCycle

3.7TreeswithaGivenNumberofEndnodes

3.8RecurrenceRelationsforT(n)

4.ApplicationsofGeneratingFunctions

4.1CountingConnectedGraphs

4.2CountingRootedTreesandForests

4.3CountingUnrootedTreesandForests

4.4BipartiteTreesandForests

4.5CountingTreesbyNumberofInversions

4.6ConnectedGraphswithGivenBlocks

5.TheMatrixTreeTheorem

5.1Introduction

5.2TheIncidenceMatrixofaGraph

5.3TheMatrixTreeTheorem

5.4Applications

5.5TheMatrixTreeTheoremforDirectedGraphs

5.6TreesintheArc-GraphofaDirectedGraph

5.7ListingtheTreesinaGraph

6.TheMethodofInclusionandExclusion

6.1Introduction

6.2TheNumberofTreesSpannedbyaGivenForest

6.3TheNumberofSpanningTreesofaGraph

6.4Examples

6.6MiscellaneousResults

7.ProblemsonRandomTrees

7.1RandomMappingFunctions

7.2TheDegreesoftheNodesinRandomTrees

7.3TheDistancebetweenNodesinRandomTrees

7.4TreeswithGivenHeightandDiameter

7.6RemovingEdgesfromRandomTrees

7.7ClimbingRandomTrees

7.8CuttingDownRandomTrees

AuthorIndex

SubjectIndex30

32
33
39
39
41
43
46
48
51
52
52
54
54
62
64
66
70
76
78
79
83
86
90
99
i109I112 1 "ii1 graphisanodeofdegreeone.

Figures1and2.

ofanyshortestpathjoiningthem. 1 2

Introduction

1111•

\23L23623..23. 1 1•

31\23..2

1 1

3/.23.-\2FIGURE1

•••-UD~12]••--

LLbJ

Manvel(1968».

endnodes. longestpathsinthetree. example,Riordan(1958)andKnuth(1968a). S 73

2.VI••12864

FIGURE4

correspondingsequences. canbeformedfromthenumbers1,2,...,n. sequencecorrespondstosometreeTn. T n betweenthesesequencesandthetreesTn. +6afJy1060 125
a 4 4 labelledn.) multinomialcoefficient (n-2)d1-1,...,dn-1. theselatterqnodesequals2(q-I)+p.) root. problemsforadifferenttypeoftree. ofthetype7icalledloops. h). h-1 c(H)=L{rrIr(SI)181-1"lf(SI)I}, f1=1 form somespanningsubtreeofD. sequences. thereare ofnodes. graphs. x"SlS2)-1+(S2SS)-1+...+(ShS1)-1). spanningsubtreestoconsider. thenh c(H)=Il!r(Sj)!St-1stt-1.

COROLLARY2.2.4.

nC1>...,Cte1>...,et (s-l)(r-l)r1-1,...,rT-1.Sl-1,...,ss-1 endnodes. n

L:(~)kn-k-1(n-k)k-1=2nn-2;

k=O wherethesumisoverallisuchthataj;::1.

THEOREM3.1.Ifn;::3,then

that wherethesumisoverallisuchthatdj;::2. d whenn=3. relation. n

An(x,y;p,q)=L(~)(x+k)k+P(y+n-k)n-k+q.

k=O listedinthefollowingtable. -10x-1(x+y+n)n -1-1(x-1+y-l)(X+Y+n)n-l

1-1y-l(x+y+n+f3(xW

2-1y-l{(X+Y+n+f3(x;2))n+(x+Y+n+a+y(x))n}

Theconventionisadoptedthat

a k==ak=k!,f3k(X)==f3ix)=k!(x+k), showthatthereare r"-l(r-1)(8_1)r-1Ck-1 followsfromformula(2.2». appealtoTheorem3.2,weobtaintheidentity n-2) (1965». obtainedfromdifferenttreesRninthisway. nlnodesintheithsubtree,thentherearen-k-l

C(n,k)=(n~1)2:C(n-k,t)kt,

t=l (n-1-nl)+...+(n-1-nk)=k(n-1)-(n-1) equalsone. obtaintherecurrencerelation n-k-1

C(n,k)=(n~1)L:(n~~~2)(n_k_l)n-k-t-1kt

t=1 =k(n~1)(n-l)n-k-2=(~=:D(n_l)n-k-1.

Theorem3.2nowfollowsbyinductiononn.

ofkdisjointtrees). n-cl-k

Ck(n,d)=(n~k)LCk(n-d,t)(kd)t.

t=1n-k

Rk(n)=LCk(n,d)={k(n-k)+W-k-1

cl=1 (~)Rin)={k(n-k)+l}Bk(n).

THEOREM3.3.If1~k~n,thenF(n,k)=knn-k-1.

Gobel(1963)provedthisbyfirstshowingthat

n-k

F(n,k)=L(n~k)ktF(n-k,t);

t=1 (rl+sk-kl)r8-1-1sr-k-1 andinthegeneralcasebyMoon(1967b).

Riordan(1964,1968b».

letv=nandu=n-k. whichthecyclehaslengthk,where1~k~n. thenodesatdifferentdistances,wefindthat (x)t=x(x-1)...(x-t+1)fort=1,2,....) inthegraphofjbelongtocycles,then "v"=2:F(t,u,v). theidentity ""knl-1n~2-1nf!.11-1_nn-k-1

Itisnotdifficulttoseethat

F(t,u,v)=(~)t!F(O,u-t,v),

""=F(O,u,v)+2:(u)tV"-t-2:(U)t+1V"-T(n)=n-1D(n,1)=nn-2. relation(3.8).Noticethat nn,

T(n)=LR(n,k)=L~iS(n-2,n-k)

1<=21<=2

n-2 =LS(n-2,k)(n)1<=nn-2, 1<=0

D(n,k)=(k-I)!(~)F(n,k)=(n)~n-1<-l.

functionsflater.by(3.7).. identityn (2x+l)n=LM(n,k)(x)1<" 1<=0 n x n=LS(n,k)(x)1<" thatthereare n-l x·x n

1=L(k+x-k)S(n-1,k)(x)1<

1<=0 n-ln-l =LkS(n-1,k)(x)1<+LS(n-1,k)(x)1<+1>

1<=01<=0~:.J{S(s-1,r-k)S(r-1,s-I)

(3.8)S(n,k)=kS(n-1,k)+S(n-1,k-1) thenumberoftreesTnwithexactlykendnodes. kn- 1 consequently, n-l

2(n-I)T(n)=L(~)T(OT(n-Oi(n-i).

1=1 moregeneralsetting.)

L(-I)f(~)(n-j)k=0

1=0] empty;italsoisequaltoanQk=n!S(k,n). nodes,then n-l

2(n-I)nn-2=L(7)il-1(n-on-I-I.

1=1

H(n,m,I)=L(-I)1-l(1)(~)C(n-j,m-j)(n-j)f,

1=1] byLemma1.1.Therefore, n-l

L(-I)i(~)T(n-j)(n-j)f=0

1=0] yieldsanotherproofofTheorem3.5,since n-l

R(n,k)=H(n,n-1,k)=L(-I)f-k(i)(~)(n-j)n-2

1=k] obtaintherelation n

2+C.L.T.

equaltothecoefficientofxkin (x+x2+...)1(1+X+x2+..-)n-I=xl(1_x)-n, (-I)k-l(-n)=(k+n-1-I).k-In-l

Therefore,

E(n+k,m+k,k)

kquotesdbs_dbs47.pdfusesText_47
[PDF] math sup exercices corrigés

[PDF] Math super compliquer milieu d'un segment

[PDF] math sur les conversion

[PDF] Math sur les distances ? une droite

[PDF] math svp

[PDF] math SVP urgent pour demain !!!!!!!!!!!!!

[PDF] math terminal l2 exercices corrigés pdf

[PDF] Math thales facile mais

[PDF] math théoreme de pythagore

[PDF] math triangle et cercle

[PDF] math trigonométrie

[PDF] Math trop énèrvant s**vp

[PDF] math type brevet

[PDF] Math un appartement a une superfine de 72 m2

[PDF] math un seul exo