[PDF] Devoir maison en Math I Analyse : corrigé





Previous PDF Next PDF



Les devoirs maison

Contenu des devoirs maison. « La résolution de problèmes est au centre des activités mathématiques de l'élève » précise les programmes. Chaque devoir 



Enseignement des mathématiques Devoirs de mathématiques à la

D'où la question en pareil contexte de changement : comment l'enseignant de mathématiques peut-il utiliser au mieux le devoir à la maison d'une part pour faire 



Devoir maison en Math I Analyse : corrigé

Devoir maison en Math I Analyse : corrigé. Exercice 1. • Soit A = { xn xn + 1. ; x ?]0+?[



Lœuf magique

Mathématiques. Devoir Maison à rendre le........................ Trace l'arc de cercle EF de centre B de rayon BE. Le cercle de centre D et de rayon BE ...



DEVOIR MAISON DE MATHEMATIQUES

DEVOIR MAISON DE MATHEMATIQUES. (à rendre avant le mardi 08/11). Exercice 1 : / 3 points. ? Je suis un nombre décimal.



Université de Provence 2011-2012 Mathématiques générales L1

Devoir Maison. Problème de dépouillement. Le problème ci-dessous se propose de répondre à la question suivante : Dans une élection où le vainqueur a recueilli s 



Le travail à la maison : un système didactique porteur dinégalités.

devoirs à la maison analyse les fonctions didactiques des travaux écrits hors la classe en mathématiques et interroge les gestes de l'étude des élèves 



Présentation dune copie (contrôle ou devoir à la maison)

? Espacer les réponses. Quelques conseils en ce qui concerne les mathématiques : ? Privilégier les calculs en ligne. ? Ecrire très lisiblement les nombres et 



Devoir Maison de Mathématiques

Propreté de la copie Ecriture lisible



Modèle mathématique.

Calcul de BC : 35×1

Universit´e Claude Bernard LYON 1 Automne 2007

Devoir maison en Math I Analyse : corrig´e

Exercice 1

•SoitA=?xnx n+ 1;x?]0,+∞[, n?N? . Par d´efinition, pour touty?A, il existe n?Netx >0 tels quey=xnx n+1, et comme 0< xn< xn+1 on a donc 0< y <1. Ceci montre que 0 est un minorant deAet que 1 est un majorant deA. De plus, `anfix´e, lim x?0x nx n+ 1= 0 et limx→+∞x nx n+ 1= 1 (on pourrait aussi choisir de fixerx <1 oux >1 et faire tendrenvers +∞), doncA n"admet pas de plus grand minorant que 0 et pas de plus petit majorant que 1. (Rai- sonner par l"absurde : en supposant par exemple queAadmet un minorant strictement plus grand que 0, montrer qu"il y a une contradiction avec lim x?0xnx n+1= 0.) AinsiA admet 0 comme borne inf´erieure et 1 comme borne sup´erieure. •SoitB=?xn|xn-1|;x?]0,1[?]1,+∞[, n?N?? . Par d´efinition, pour touty?B, il existen?Netx >0,x?= 1, tels quey=xn|xn-1|. Donc (comme pour l"ensembleA ci-dessus), 0 est un minorant deB, et c"est sa borne inf´erieure car, `anfix´e, lim x?0x n|xn-1|= 0. En revanche,Bn"est pas major´e puisque, `anfix´e, lim x ?=→1x n|xn-1|= +∞.

DoncBn"admet pas de borne sup´erieure.

•SoitC=?xnx n+ 1;x?]0,+∞[, n=E(x) +E(1/x)? . Comme pour l"ensembleA, 0 est un minorant deCet 1 est un majorant. De plus, on remarque que pour 0< x <1,

0 ce qui montre par comparaison ("th´eor`eme des gendarmes»pour les fonctions) que lim x?0x

E(x)+E(1/x)x

E(x)+E(1/x)+ 1= 0.

Par cons´equent, 0 est la borne inf´erieure deC. D"autre part, pour toutn?N,n≥2, on aE(n) =netE(1/n) = 0, et doncun:=nnn n+1appartient `aC. Ornn≥ndonc lim n→+∞nn= +∞, d"o`u par composition de limites limn→+∞un= 1. Ceci montre que

1 est la borne sup´erieure deC.

1

Exercice 2

1. Soitu0=15

?]0,1[. On suppose que (u1,...,uk) sont des r´eels appartenant `a l"intervalle ]0,1[ satisfaisant la relation de r´ecurrence u n+1=15 ?1-⎷1-un? u k+1:=15 ?1-⎷1-uk? est bien d´efini puisque 1-uk>0. De plus, il est strictement positif puisque 1-uk<1, ce qui implique⎷1-uk<1. Enfin

1-uk+1=15

?4 +⎷1-uk?<15 (4 + 1) = 1. . Pour toutn?N, on a par construction u n+1-un=15 ?1-⎷1-un-5un?.

1-un. Or on a (1-5x)2<1-xquel que soitx?]0,1/5]. (Il suffit de d´evelopper le carr´e

et constater que 25x-9<0 puisque 5<9!) Commeu0=15 , on en d´eduit directement u pourn≥1, on obtient u

3. D"apr`es ce qui pr´ec`ede, la suite (un)n?Nest d´ecroissante, minor´ee par 0 et major´ee par

15 . Elle est donc convergente vers une limite??[0,15 ]. Pour calculer cette limite on observe que lim(un+1) = lim(un) =?et que, puisque la fonctionx?→15 ?1-⎷1-x? est continue sur [0,15 lim 15 ?1-⎷1-un?=15

1-⎷1-??

Par unicit´e de la limite on a donc

?=15

1-⎷1-??

d"o`u (1-5?)2= 1-?, c"est-`a-dire encore?(25?-9) = 0. Comme 25/9>1/5 (in´egalit´e utilis´ee plus haut!), on a n´ecessairement?= 0.

Exercice 3

Soit (un)n?Nune suite r´eelle telle que les trois suites (vn)n?N, (wn)n?Net (xn)n?Nd´efinies par

v n=u2n, wn=u2n+1, xn=u3n,pour toutn?N, convergent. 2

1. La suite (u6n)n?Nest `a la fois une suite extraite de (vn)n?N(caru6n=v?(n)avec?:

n?→3nstrictement croissante) et une suite extraite de (xn)n?N(caru6n=xψ(n)avec ψ:n?→2nstrictement croissante). Une suite extraite d"une suite convergente ayant la mˆeme limite, la suite (u6n)n?Nconverge donc vers la limite de (vn)n?N, et aussi vers la limite de (xn)n?N. Par unicit´e de la limite, les suites (vn)n?Net (xn)n?Nont donc mˆeme limite.

2. On observe que les suites (xn)n?Net (wn)n?Nont ´egalement une suite extraite commune,

`a savoir (u3(2n+1))n?N(caru3(2n+1)=x2n+1=w3n+1), et elles ont donc la mˆeme limite. Comme lim(xn) = lim(vn), on a donc lim(wn) = lim(vn).

3. D"apr`es un th´eor`eme du cours, puisque les deux suites (u2n)n?Net (u2n+1)n?Nconvergent

vers la mˆeme limite, la suite (un)n?Nconverge.

Exercice 4

Soitf:R→Rune fonction telle que, pour tousx,y?R,

1. Pour toutx?Ron a, d"apr`es l"hypoth`ese appliqu´ee `ay=x+ 2π,

(puisque sin est 2πp´eriodique) et doncf(x)-f(x+2π) = 0. Ceci montre que la fonction est 2πp´eriodique.

2. Soitx0?R. On veut montrer que limx→x0f(x) =f(x0). Soitε >0. Puisque sin est

hypoth`ese, pour toutx?R, montre que lim x→x0f(x) =f(x0).

3. On veut montrer que

lim x ?=→π/2f(x)-f(π/2)x-π/2 existe. Or on sait que sin est d´erivable enπ/2 et sin?(π/2) = cos(π/2) = 0. Donc lim x ?=→π/2sin(x)-sin(π/2)x-π/2= 0.

Et d"apr`es l"hypoth`ese, pour toutx?=π/2,

Donc par comparaison

lim x ?=→π/2? ???f(x)-f(π/2)x-π/2? ???= 0, 3 d"o`u aussi (par application imm´ediate de la d´efinition de la limite), lim x ?=→π/2f(x)-f(π/2)x-π/2= 0. Ainsifest d´erivable enπ/2 etf?(π/1) = 0.

Exercice 5

Pour tout entiern?N?, on consid`ere la fonctionfn: [0,1]→Rd´efinie par : f n(x) =xn-(1-x)2.

1. Soitn?N?.

(a) La fonctionfnest d´erivable et pour toutx?[0,1], f ?n(x) =nxn-1+ 2(1-x)≥0 (comme somme de deux termes positifs). Doncfnest croissante. (b) On afn(0) =-1 etfn(1) = 1. Commefest continue (car les fonctions puissances x?→xk,x?→x2et la fonction affinex?→ -1+2xle sont; ou encorefest continue comme toute fonction polynˆomiale), on peut lui appliquer le th´eor`eme des valeurs interm´ediaires : puisque 0?]-1,1[, il existeαn?]0,1[ tel quefn(αn) = 0. (c) On afn+1(αn) =αn+1n-(1-αn)2, sachant que par constructionαnn-(1-αn)2= 0, d"o`ufn+1(αn) =αn+1n-αnn. Ce nombre est n´egatif puisqueαnest dans l"intervalle ]0,1[. 2. ´egalit´e provenant juste de la d´efinition deαn+1). Commefn+1est croissante, et

Par suite, (αn)n?N?est croissante.

(b) La suite (αn)n?N?est croissante et major´ee par 1. Elle est donc convergente vers

α:= sup{αn;n?N?}.

(c) Supposons queα <1. n, quel que soitn?N?. Puisqueα <1,αntend vers 0, et par le th´eor`eme des gendarmes, on en d´eduit queαnntend vers 0. ii. Commefn(αn) = 0 =αnn-(1-αn)2, en passant `a la limite on obtient (1-α)2=

0. Ceci contredit l"hypoth`ese de d´epartα <1.

(d) D"apr`es ce qui pr´ec`ede, la limite de la suite (αn)n?N?est inf´erieure ou ´egale `a 1

(limite d"une suite d"´el´ements de ]0,1[) et ne peut ˆetre strictement inf´erieure `a 1.

Donc elle est ´egale `a 1.

4quotesdbs_dbs47.pdfusesText_47

[PDF] MATHEMATIQUE !

[PDF] Mathématique ! Devoirs maison

[PDF] mathematique !!

[PDF] Mathématique !! help me

[PDF] Mathématique le coin du petit chercheur

[PDF] Mathématique ( échelle)

[PDF] Mathematique ( Les Nombres Relatifs ) !!! A L'aiiide !!

[PDF] mathematique (A LAIde°)

[PDF] mathématique (juste corriger) (chut)

[PDF] Mathématique (Les droites remarquables)

[PDF] Mathématique , Devoir 12 , Exercice 3 CNED

[PDF] Mathématique , devoirs maison ; Puissance de 10

[PDF] Mathématique , Géométrie

[PDF] Mathématique - Le thème de mon devoir maison est : pyramide et cône

[PDF] Mathématique - Les intervalles