[PDF] Chapitre 5 – Fonctions linéaires et affines





Previous PDF Next PDF



REVISION DE NOEL – 3E ANNEE – MATHEMATIQUE

6 juin 2019 Pour la même raison (absence d'examen en décembre) l'UAA3 « approche graphique d'une fonction » ne fait pas non plus partie de la matière de l' ...



3e – Révisions fonctions

3e – Révisions fonctions. Exercice 1. Dans le repère placer les points. A(-1 ; 2)



3ème Révisions – Fonctions linéaires et affines

h) Quel est l'antécédent de -14 ? Exercice 3. Soit la fonction affine f telle que f(x) = 5x + 2. a) Quelle est l' 



REVISION DE NOEL – 3E ANNEE – MATHEMATIQUE

Ces exercices doivent donc évidemment être réalisés à domicile auparavant. MATIERE A REVOIR POUR L'EXAMEN DE JUIN EN MATHEMATIQUE : UAA4 (Fonction du premier 



FONCTIONS POLYNÔMES DE DEGRÉ 3

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS Partie 3 : Forme factorisée d'une fonction polynôme de degré 3. Exemple :.



Mathématiques 3 - Partim A (Analyse de fonctions à plusieurs

Université catholique de Louvain - Mathématiques 3 - Partim A (Analyse de et contextes ' Fonctions de plusieurs variables» de. James Steward 3 ème.



Attendus de fin dannée

Quelle est la hauteur de la balle au troisième rebond ? Il résout des problèmes s'y ramenant qui peuvent être internes aux mathématiques ou en lien.



Chapitre 5 – Fonctions linéaires et affines

d) Étude d'une fonction linéaire. * 1 er cas : on connaît l'expression. Soit la fonction f définie pour tout nombre x par : f x = 2. 3 x . Étude de f.



CHAPITRE 16 : FONCTION DU PREMIER DEGRÉ Théorie Exercices

Mathématique 3ème année Représentation graphique d'une fonction du premier degré ... Intersection des graphiques de deux fonctions du premier degré.



Télécharger en PDF les fonctions linéaires et les pourcentages

Téléchargé depuis https://www.mathematiques-web.fr. Cours maths troisième (3ème). Les fonctions Soit f est la fonction linéaire de coefficient 2.

Chapitre 5 - Fonctions linéaires et affines

1 - Fonctions linéaires

a) Définition

On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x

où a est une constante. Ce nombre a est alors appelé coefficient de linéarité de la fonction linéaire f.

Remarque : lien avec la proportionnalité

* On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x. La fonction qui, à la grandeur x, associe la grandeur y est donc linéaire. * Réciproquement, toute fonction linéaire représente une situation de proportionnalité. b) Propriétés Soit f une fonction linéaire de coefficient a. * Le coefficient d'une fonction linéaire est l'image de 1 par cette fonction, soit : a = f (1). Démonstration : évidente en calculant l'image de 1. * Pour tout nombre x non nul : a=fx x. Démonstration : évidente d'après la définition. c) Représentation graphique

On considère un repère du plan.

* Si une fonction est linéaire, alors sa représentation graphique est une droite qui passe par l'origine.

* Réciproquement, si la représentation graphique d'une fonction est une droite qui passe par l'origine du repère,

alors cette fonction est linéaire.

Démonstrations : admise.

d) Étude d'une fonction linéaire * 1 er cas : on connaît l'expression Soit la fonction f définie pour tout nombre x par : fx=2

3x. Étude de f

fx=2

3x.On reconnaît une expression de la forme f (x) = a x avec :a=2

3donc f est linéaire.

Par conséquent sa représentation graphique est une droite qui passe par l'origine. Par ailleurs : f (3) = 2 . Donc la droite passe par le point de coordonnées ( 3 ; 2 ).

Représentation graphique

* 2ème cas : on connaît un nombre et son image Soit la fonction g définie par sa représentation graphique.

Étude de g

La représentation graphique de g est une droite qui passe par l'origine. Donc g est une fonction linéaire et son expression est de la forme g (x) = k x.

D'autre part, la droite passe par le point de coordonnées ( 5 ; - 2 ) ; par conséquent : g ( 5 ) = - 2 .

Or, pour tout nombre x non nul : k=gx x. Donc, pour x = 5 : k=g5 5=-2 5

Conclusion : pour tout nombre x,gx=-2

5x. - 2

+ 5

2 - Fonctions affines

a) Définition

On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b

où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.

Remarques

* Si b = 0, l'expression devient f (x) = a x . On retrouve alors une fonction linéaire. Donc : toute fonction linéaire est aussi une fonction affine. * Si a = 0, l'expression devient : f (x) = b . On obtient alors une fonction constante. Donc : toute fonction constante est aussi une fonction affine. * Si a = b = 0, l'expression devient : f (x) = 0 . On obtient alors la fonction nulle. Et la fonction nulle est linéaire, constante et donc affine. b) Représentation graphique

On considère un repère du plan.

* Si une fonction est affine, alors sa représentation graphique est une droite (qui n'est pas parallèle à l'axe des

ordonnées).

* Réciproquement, si la représentation graphique d'une fonction est une droite (qui n'est pas parallèle à l'axe

des ordonnées), alors cette fonction est affine.

Démonstrations : admise.

Remarque : la représentation graphique d'une fonction constante est une droite parallèle à l'axe des abscisses.

c) Propriétés Soit f une fonction affine de coefficient directeur a et d'ordonnée à l'origine b.

* L'ordonnée à l'origine d'une fonction affine est l'image de 0 par cette fonction, soit : b = f (0) .

Démonstration : évidente en calculant l'image de 0. * Pour tous nombres x1 et x2 tels que : x1 ≠ x2 : a=fx1-fx2 x1-x2

Démonstration

f (x1) - f (x2) = ( a x1 + b ) - ( a x2 + b ) = a x1 + b - a x2 - b = a ( x1 - x2 )

Comme x1 ≠ x2 , on peut diviser chaque membre de l'égalité par ( x1 - x2 ), ce qui donne le résultat.

d) Étude d'une fonction affine * 1 er cas : on connaît l'expression Soit la fonction f définie pour tout nombre x par : fx=2x-3. Étude de f fx=2x-3. On reconnaît une expression de la forme f (x) = a x + b avec : a = 2 et b = - 3 donc f une fonction affine. Par conséquent sa représentation graphique est une droite.

Par ailleurs : f (0) = - 3 et f (1) = - 1 .

Donc la droite passe par les points de coordonnées ( 0 ; - 3 ) et ( 1 ; - 1 ).Représentation graphique * 2ème cas : on connaît un nombre et son image

1ère méthode : lecture graphique

Soit la fonction g définie par sa représentation graphique.

Étude de g

La représentation graphique de g est une droite (qui n'est pas parallèle à l'axe des ordonnées).

Donc g est une fonction affine et son expression est de la forme g (x) = m x + p.

Par lecture graphique : m=-4

6=-2

3et p = + 3 .

Par conséquent : gx=-2

3x3. - 4

+ 6p = + 3m=-4 6

2 ème méthode : calcul

Soit la fonction affine f telle que : f ( 2 ) = 1 et f ( 5 ) = - 5 . On sait que f est une fonction affine, donc son expression est de la forme f (x) = a x + b. De plus : f ( 2 ) = 1 donc, en remplaçant x par 2 dans l'expression de f : 2 a + b = 1 .

Par ailleurs : f ( 5 ) = - 5 donc, en remplaçant x par 5 dans l'expression de f : 5 a + b = - 5 .

2 a + b = 1

On doit donc résoudre le système :

5 a + b = - 5

Après résolution, on trouve : a = - 2 et b = 5 .

Par conséquent : f (x) = - 2 x + 5

quotesdbs_dbs47.pdfusesText_47
[PDF] mathématiques 3é

[PDF] MATHEMATIQUES 3e FACILE MAIS DUR POUR MOI

[PDF] Mathématiques 3e nombres x

[PDF] Mathématiques 3ème agrandissement/reduc

[PDF] Mathématiques 3ème CNED DEVOIR 02

[PDF] Mathématiques 3eme devoir numéro 3

[PDF] Mathématiques 3ème exo 3 devoir 9 CNED

[PDF] Mathématiques 4 eme

[PDF] Mathématiques 4ème

[PDF] Mathématiques 4ème (Calcul littéral)

[PDF] Mathématiques 4ème : échelle , pourcentage

[PDF] Mathématiques 4ème Recherche n°4

[PDF] mathématiques 5 ème un carré qui grandit

[PDF] Mathématiques 5ème help

[PDF] mathématiques 6eme calcul de périmètre