[PDF] NOMBRES COMPLEXES (Partie 2) a2 + b2 = z. Méthode :





Previous PDF Next PDF



Cours de mathématiques - Exo7

Dans le calcul matriciel la matrice nulle joue le rôle du nombre 0 pour les réels. Calculer A2



Identités remarquables

Factoriser A = x² + 6x + 9. On reconnaît une expression du type a² + 2ab + b² avec a = x et b = 3. Vérifions : a² = x² ; 



Considérons les matrices `a coefficients réels : A = - ( 2 1

1) Calculer s'ils ont un sens les produits AB BA



Démonstrations Les identités remarquables Les compétences

Les compétences : représenter chercher



NOMBRES COMPLEXES (Partie 2)

a2 + b2 = z. Méthode : Calculer le module d'un nombre complexe. Vidéo https://youtu.be/Hu0jjS5O2u4. Calculer : a) 3? 2i b) ?3i c) 2 ?i 



Cours de mathématiques - Exo7

Nous allons voir qu'il est possible de calculer les premières décimales de ? par la a2 = 1 b2 = 1 025 a3 = 1 b3 = 1





FINALE FASCICULE MATHS 3EME ok

[1ere édition conforme au nouveau programme des Mathématiques du premier cycle MATHEMATIQUES EN CLASSE DE 3EME ... 1- Calculer : A² ; B² et A x B et A/B.



CALCUL ALGEBRIQUE

lesquelles on ne peut pas calculer l'expression. Exemple : Soit A(x) = On reconnaît une identité remarquable du type a² – b² = (a – b)(a + b).



YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1NOMBRES COMPLEXES (Partie 2) Dans tout le chapitre, on munit le plan d'un repère orthonormé direct

O; u; v . I. Module et argument d'un nombre complexe 1) Module Définition : Soit un nombre complexe z=a+ib . On appelle module de z, le nombre réel positif, noté z , égal à a 2 +b 2

. M est un point d'affixe z. Alors le module de z est égal à la distance OM. Propriétés : Soit z et z ' deux nombres complexes. a)

z 2 =zz b) z=z c) -z=z

Démonstrations : a)

zz=a+ib a-ib =a 2 -ib 2 =a 2 -i 2 b 2 =a 2 +b 2 =z 2 b) z=a 2 +-b 2 =a 2 +b 2 =z c) -z=-a 2 +-b 2 =a 2 +b 2 =z

Méthode : Calculer le module d'un nombre complexe Vidéo https://youtu.be/Hu0jjS5O2u4 Calculer : a) 3-2i

b) -3i c) 2-i YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2a) 3-2i=3 2 +(-2) 2 =13 b) -3i=-3×i=3×1=3 c) 2-i=2-i=2 2 +-1 2 =2+1=3

2) Argument Définition : Soit un point M d'affixe z non nulle. On appelle argument de z, noté arg(z) une mesure, en radians, de l'angle

u;OM . Remarques : - Un nombre complexe non nul possède une infinité d'arguments de la forme arg(z)+2kπ k∈! . On notera arg(z) modulo 2π ou arg(z)2π - 0 n'a pas d'argument car dans ce cas l'angle u ;OM n'est pas défini. Exemple : Vidéo https://youtu.be/Hu0jjS5O2u4 Soit z=3+3i . Alors z=3+3i=3 2 +3 2 =18=32 Et arg(z)= 4 2π . Propriétés : Soit z un nombre complexe non nul. a) z est un nombre réel ⇔arg(z)=0π , b) z est un imaginaire pur ⇔arg(z)= 2 . c) arg(z)=-arg(z) d) arg(-z)=arg(z)+π

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3Démonstrations : a) Le point M d'affixe z appartient à l'axe des réels. b) Le point M d'affixe z appartient à l'axe des imaginaires. c) d) Ses résultats se déduisent par symétrie. II. Forme trigonométrique d'un nombre complexe 1) Définition Propriété : Soit

z=a+ib un nombre complexe non nul. On pose :

θ=arg(z)

On a alors :

a=zcosθ et b=zsinθ . Définition : On appelle forme trigonométrique d'un nombre complexe z non nul l'écriture z=zcosθ+isinθ avec

θ=arg(z)

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4 Méthode : Ecrire un nombre complexe sous sa forme trigonométrique Vidéo https://youtu.be/zIbpXlgISc4 Ecrire le nombre complexe

z=3+i sous sa forme trigonométrique. - On commence par calculer le module de z : z=3+1=2 - En calculant z z , on peut identifier plus facilement la partie réelle de z et sa partie imaginaire : z z 3 2 1 2 i

On cherche donc un argument θ

de z tel que : cosθ= 3 2 et sinθ= 1 2 . Comme cos 6 3 2 et sin 6 1 2 , on a : z z =cos 6 +isin 6

Donc :

z=2cos 6 +isin 6 avec arg(z)= 6 2π

. Avec une calculatrice ou un logiciel, il est possible de vérifier les résultats obtenus : 2) Propriétés Inégalité triangulaire : Soit z et z ' deux nombres complexes.

Démonstration : Il s'agit d'une traduction de l'inégalité sur les distances.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5 Propriétés : Soit z et z ' deux nombres complexes non nuls et n entier naturel non nul. Produit

zz'=zz' arg(zz')=arg(z)+arg(z')

Puissance

z n =z n arg(z n )=narg(z)

Inverse

1 z 1 z arg 1 z =-arg(z)

Quotient

z z' z z' arg z z' =arg(z)-arg(z')

Démonstration pour le produit : On pose

θ=arg(z)

et

θ'=arg(z')

zz'=zcosθ+isinθ z'cosθ'+isinθ' =zz'cosθcosθ'-sinθsinθ' +isinθcosθ'+cosθsinθ' =zz'cosθ+θ' +isinθ+θ'

Donc le module de

zz' est zz' et un argument de zz' est

θ+θ'=arg(z)+arg(z')

. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs47.pdfusesText_47
[PDF] Mathématiques:devoir maison

[PDF] Mathématiques:devoir maison numéro 5

[PDF] Mathématiques:Devoir maison n°6

[PDF] mathématiques:Problème de vecteur

[PDF] Mathématiques:résoudre une équation

[PDF] Mathématiques; exercice; Ecrire une expression mathematique traduisant :

[PDF] Mathématiques_ fonction trinôme

[PDF] Mathématiques~ km/h Vitesse Moyenne

[PDF] Mathematique_fractions

[PDF] Mathematique_probleme

[PDF] mathématix ( dm de math)

[PDF] Mathémmatique

[PDF] mathenpoche

[PDF] mathenpoche 3

[PDF] Mathes