[PDF] Méthode des éléments finis 26 nov. 2008 A.9





Previous PDF Next PDF



Machines à vecteurs supports

Leur définition mathématique est : marge géométrique marge numérique m = min du problème qui permettent de caractériser la solution du problème primal. (f ...



La résolution de problèmes mathématiques au cours moyen

Savoir résoudre des problèmes est une finalité de l'enseignement des mathématiques à l'école élémentaire mais aussi le vecteur principal d'acquisition des 



Mathématiques

Calculer les coordonnées du milieu d'un segment. - Caractériser alignement et parallélisme par la colinéarité de vecteurs. - Résoudre des problèmes en utilisant 



Seconde générale - Les vecteurs du plan - Exercices - Devoirs

Exercice 41. Exercice 42. 9/9. Les vecteurs du plan – Exercices - Devoirs. Mathématiques Seconde générale - Année scolaire 2021/2022 http s ://physique-et-maths 



Leçon n°20 : Problèmes dalignement de parallélisme ou d

les vecteurs et sont colinéaires. ▻ Problème : Page 6. ▻ Propriété : Si deux droites 



Etude épistémologique et didactique de lutilisation du vecteur en

27 nov. 2007 vecteur en mathématiques et en physique – lien entre ... que ce problème puisse être surmonté dans l'enseignement des mathématiques ne suffit pas.



EFFETS DES VECTEURS DAPPRENTISSAGE SUR LES

d'un logiciel de résolution de problèmes numérique comme vecteur d des problèmes de mathématiques et la présence de relations interactives manifestes.



situations-problèmes-en-mathématiques-au-C3-1.pdf

La relation aux élèves est différente de celle d'un enseignement traditionnel puisque l'enseignant n'est pas vecteur de savoir. C'est un accompagnateur de l 



raytracing.pdf

pouvoir manipuler les vecteurs à l'aide des opérations mathématiques usuelles (voir Appendice 2 pour Puisque la résolution mathématique du problème a été ...



[PDF] Algorithmes - Exo7 - Cours de mathématiques

Le calcul formel ne résout malheureusement pas tous les problèmes de mathématique d'un coup de baguette senter soit un vecteur ligne soit un vecteur colonne.



Machines à vecteurs supports

vecteurs x ? Rp. Le cadre probabiliste du problème consiste à supposer Leur définition mathématique est : marge géométrique marge numérique m = min.



Machines à vecteurs supports

vecteurs x ? Rp. Le cadre probabiliste du problème consiste à supposer Leur définition mathématique est : marge géométrique marge numérique m = min.



Etude épistémologique et didactique de lutilisation du vecteur en

27 nov. 2007 vecteur en cours de mathématiques à partir d'un problème "réel" qui s'apparente à une question de physique. Il s'agit de choisir un ordre ...



Mathématiques appliquées secondaire 4 - Programme détudes

Vecteurs. B-5. Problème. Parmi les quantités ci-dessous indiquez lesquelles sont des quantités scalaires et lesquelles sont des quantités vectorielles.



Outils Mathématiques et utilisation de Matlab

vecteur. Dans ce chapitre nous allons donc apprendre `a définir Il n'est donc pas nécessaire (impossible en fait) de déclarer le type de variable.



Méthode des éléments finis

26 nov. 2008 A.9 Matrice raideur et vecteur force généralisée des éléments ... qui est une formulation mathématique du problème basée sur des ...



VECTEURS ET DROITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. VECTEURS ET DROITES. En 1837 le mathématicien italien Giusto BELLAVITIS



Cours de mathématiques - Exo7

Appliquons ceci au problème suivant : Travaux pratiques 4. Combien y-a-t-il d'occurrences du chiffre 1 dans les nombres de 1 à 999 ? Par exemple le chiffre 



Mécanique des milieux continus

14 mar. 2020 2.1.1 Vecteur contrainte et tenseur des contraintes 17. 2.1.2 Contraintes principales ... de la résolution du problème mathématique obtenu.



Cours doptimisation

2.2 Dérivées partielles et vecteur gradient . Attention : points et vecteurs sont définis par des coordonnées (x ... Mathématiques 2 : Optimisation.

Méthode des éléments finis

Her vé Oudin28/09/2008

Table des matières

1

Méthodes d"approximation en physique1

1.1 Généralités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Processus d"analyse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Méthodes d"approximation. . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Méthode des résidus pondérés. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Formulation variationnelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Transformation de la forme intégrale. . . . . . . . . . . . . . . . . . . 6

1.3.2 Discrétisation de la forme intégrale. . . . . . . . . . . . . . . . . . . . 7

1.3.3 Écriture matricielle des équations. . . . . . . . . . . . . . . . . . . . . 8

1.4 Principe des travaux virtuels. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Écriture du principe des travaux virtuels. . . . . . . . . . . . . . . . . 9

1.4.2 Discrétisation du Principe des Travaux Virtuels. . . . . . . . . . . . . 10

2 Méthode des éléments finis13

2.1 Généralités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Démarche éléments finis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Discrétisation géométrique. . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Approximation nodale. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Quantités élémentaires. . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Assemblage et conditions aux limites. . . . . . . . . . . . . . . . . . . 20

2.3 Utilisation d"un logiciel éléments finis. . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Déroulement d"une étude. . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Techniques de calculs au niveau élémentaire. . . . . . . . . . . . . . . 24

2.4 Organigramme d"un logiciel éléments finis. . . . . . . . . . . . . . . . . . . . 29

3 Applications en mécanique31

3.1 Structures treillis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Élément barre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Assemblage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Structures portiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Élément poutre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Assemblage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Élasticité plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Contraintes planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Déformations planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Élément T3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Élément Q4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A Illustrations académiques47

A .1 Application de la méthode des résidus pondérés. . . . . . . . . . . . . . . . . 47 A.2 Formulation variationnelle de l"équation de poisson. . . . . . . . . . . . . . . 48 A.3 Construction d"une approximation nodale linéaire. . . . . . . . . . . . . . . . 48 A.4 Fonctions d"interpolation d"un élément triangulaire. . . . . . . . . . . . . . . 49 A.5 Structure élastique à symétrie cylindrique. . . . . . . . . . . . . . . . . . . . 50 A.6 Assemblage et conditions aux limites. . . . . . . . . . . . . . . . . . . . . . . 51 A.7 Principe des Travaux Virtuels en traction-compression. . . . . . . . . . . . . . 52 A.8 Équivalence PTV et équation locale avec conditions aux limites. . . . . . . . . 53

A.9 Matrice raideur et vecteur force généralisée des élémentstriangulaires. . . . . 53

A.10 Changement de base dans le plan. . . . . . . . . . . . . . . . . . . . . . . . . 54 A.11 Dimensionnement statique d"une colonne. . . . . . . . . . . . . . . . . . . . . 55 A.12 Étude statique d"un portique. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Références61

Index62

1

Méthodes d"approximation

e n physique

1.1Généralités

1.1.1Processus d"analyse

De

façon générale, les différentes étapes d"analyse d"un problème physique s"organisent suivant

le processus schématisé par la figure1.1. Nous partons d"un problème physique. Le cadre précisproblème physique

hypothèses de modélisationévolution du m odèle mathématiquemodèle mathématique discrétisation du problèmeévolution du m odèle numériquemodèle numérique estimation de la précision du m odèle numérique- vérification des hypothèses d e modélisation (analyse du modèle mathématique) - interprétation des résultatsréponse nouveau modèle physique procédure numérique Figure 1.1 -Processus d"analyse utilisant un modèle numérique

2Méthodes d"approximation en physiquede l"étude est défini par les hypothèses simplificatrices qui permettent de déterminer le modèle

m

athématique approprié. La difficulté pour l"ingénieur est de savoir choisir parmi les lois de la

physique, celles dont les équations traduiront avec la précision voulue la réalité du problème

physique. Un bon choix doit donner une réponse acceptable pour des efforts de mise en oeuvre non prohibitifs.

En résumé, les questions essentielles auxquelles l"ingénieur devra répondre s"il veut effectuer

une analyse par un modèle numérique dans de bonnes conditions, sont les suivantes : quel modèle mathématique utiliser? quel modèle numérique faut-il lui associer? quelle est l"erreur d"approximation commise? quelle est l"erreur numérique commise? peut-on améliorer le modèle numérique? faut-il changer le modèle mathématique? etc.

Qu"est ce qu"un modèle? La figure1.2illustre sur un exemple mécanique simple trois modélisa-

tio

ns envisageables. Chacune d"elles correspond à modèle mathématique différent, quelle est la

bonne? Le choix du modèle mathématique est un compromis entre le problème posé à l"ingé-(a) schéma du support

F b) poutre : solution analytique ou numérique~ F c) élasticité plane : solution nu mérique~ F d) élasticité tridimensionnelle : so lution numérique

Figure 1.2 -Choix d"un modèle mathématique : dimensionnement statique d"un support d"étagère

nieur " quelles grandeurs veut-on calculer et avec quelle précision? » et les moyens disponibles

pour y répondre. En fait, les équations du modèle retenu sont soumises à un certain nombre

d"hypothèses basées sur les sciences de l"ingénieur et il faut connaître leur domaine de validité

pour pouvoir vérifier que la solution obtenue est satisfaisante. Si le modèle mathématique n"admet pas de solution analytique, il est alors nécessaire de

chercher une solution approchée de ce modèle. Dès lors, la discrétisation du problème correspond

1.2 Méthode des résidus pondérés3au choix d"un modèle numérique permettant de traiter les équations mathématiques. Il est

im

portant de savoir distinguer et hiérarchiser les différents niveaux d"hypothèses utilisés pour

modéliser un phénomène physique. En effet, la solution exacte d"un modèle mathématique qui

ne correspond pas à la réalité physique est inutile.

1.1.2Méthodes d"approximation

Po

ur discrétiser les modèles complexes de phénomènes physiques, l"ingénieur dispose, à l"heure

actuelle, de méthodes d"approximation permettant de résoudre la plupart des problèmes pour lesquels il n"existe pas de solution formelle. Toutes les méthodes d"approximation ont un même objectif, remplacer un problème mathé-

matique défini sur un milieu continu (équations différentielles ou intégrales) par un problème

mathématique discret (équation matricielle) de dimension finie que l"on sait résoudre numéri-

quement. La classification que nous proposons sur la figure1.3n"est pas unique. Elle permet sim

plement de distinguer la méthode, en fonction de la démarche utilisée pour obtenir une forme

intégrale. Il est important de noter qu"un problème physique peut être formulé de façon équi-

valente en un système d"équations différentielles ou sous une formulation variationnelle. Nous

montrons par la suite comment passer de l"une à l"autre.

1. Méthode des résidus pondérés (ou annulation d"erreur) : elle utilise comme point de départ

les équations locales et les conditions aux limites du problème. Ces équations sont des

équations différentielles définies sur l"intérieur du domaine, ce sont les équations locales,

et sur la frontière du domaine, ce sont les conditions aux limites.

2. Méthodes variationnelles : le point de départ de ces méthodes est un principe variationnel

qui est une formulation mathématique du problème basée sur des considérations énergé-

tiques. La formulation obtenue dépend bien entendu des hypothèses de modélisation du problème physique.

1.2Méthode des résidus pondérés

So it un problème physique d"inconnue le champ scalaireu(M)défini sur un domaineD. Nous

cherchons une solution du modèle mathématique défini par les équations locales sur l"intérieur

du domaineD, et les conditions aux limites sur la frontière du domaine. Ces équations diffé-

rentielles forment le système suivant :

8M2D;L(u) =f(M;t)équation locale

8M2;C(u) =e(M;t)conditions aux limites(1.1)

oùLetCsont des opérateurs agissant sur l"inconnueuqui dépend du point courantMet du tempst. Le résidu est l"erreur commise lorsque l"on utilise une approximationudu champu

pour écrire les équations du problème. Afin de simplifier la présentation, considérons dans un

premier temps que : les conditions aux limites du problème sont homogènes,C(u) = 0; l"approximation choisie les satisfait toutes,C(u) = 0. Le résidu est alors défini par l"erreur sur l"équation locale, soit :

8M2D;R(u) =L(u)f(M;t)(1.2)

4Méthodes d"approximation en physiquesystème physique continu

formes intégralesformes diérentielles formes matriciellesméthodes d "approximation discrétisationméthodes variationnelles f ormulation mathématique du problème Principe des Travaux Virtuelsméthode des résidus pondérésmise en équations f ormulation mathématique du problème

Principe Fondamental

de la DynamiqueFigure 1.3 -Vue synthétique des méthodes d"approximation Soit un ensemble de fonctions dites de pondérationPi(M)1, quelconques et définies sur le do

maineD. La méthode des résidus pondérés consiste à annuler l"erreur commise sur le résidu,

en la pondérant sur le domaine par un nombre fini de fonctionsPi(M). Ce qui correspond à des équations sous forme intégrale représentées par :

8Pi(M);Z

D

Pi(M)?(u) dV= 0(1.3)

Du point de vue mathématique,au lieu de résoudre l"équation?(u) = 0, on considère le problème

équivalent8';R

D'?(u)dV= 0. Ne sachant pas résoudre ce problème analytiquement, on en cherche une approximation en restreignant les'ànfonctions de pondération. Pour une approximationuànparamètres, nous choisironsnfonctions de pondération

afin d"obtenir autant d"équations intégrales que de paramètres, c"est-à-dire un système matriciel

d"ordren. Soit une approximation de la forme : u =nX i=1W i(M)qi(t) =W(M)Tq(t)(1.4) où les fonctionsWi(M)sont les fonctions de forme2et lesqi(t)sont les paramètres de l"ap-

proximation, c"est-à-dire les participations des fonctions de forme respectives dans la solution du

problème. Lesnéquations sont de la forme :

8i?[1;n];Z

D

Pi(M)?

W(M)Tq(t)

dV= 0(1.5)1. ces fonctions prennent aussi l'appellation de fonctions tests ou fonctions poids 2 . base de fonctions pour construire l'approximation

1.3 Formulation variationnelle5Pour illustrer notre propos, admettons que le problème soit un problème stationnaire linéaire,

l"

équation matricielle est alors de la forme :

Kq=F(1.6)

avecK=R

DP(M)L

quotesdbs_dbs47.pdfusesText_47
[PDF] Mathématiques:résoudre une équation

[PDF] Mathématiques; exercice; Ecrire une expression mathematique traduisant :

[PDF] Mathématiques_ fonction trinôme

[PDF] Mathématiques~ km/h Vitesse Moyenne

[PDF] Mathematique_fractions

[PDF] Mathematique_probleme

[PDF] mathématix ( dm de math)

[PDF] Mathémmatique

[PDF] mathenpoche

[PDF] mathenpoche 3

[PDF] Mathes

[PDF] Mathes algeb

[PDF] matheur copyleft

[PDF] matheval

[PDF] mathfle