[PDF] VECTEURS ET REPÉRAGE Trois points du plan non





Previous PDF Next PDF



VECTEURS DE LESPACE

= 2. 3. FI ! "! . Démontrer que les points E J et C sont alignés. Pour prouver cet alignement



VECTEURS ET REPÉRAGE

Trois points du plan non alignés O I et J forment un repère



VECTEURS ET DROITES

Démonstration : Soit A x. 0. ; y. 0. ( ) un point de la droite D et u ! ? ; ?. ( ) un vecteur directeur de D. Un point M(x ; y) appartient à la droite D si 



DROITES DU PLAN

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Vidéo https://youtu.be/GVDUrdsRUdA. Soit 6. I. I. ( un point de la droite et .



TRANSLATION ET VECTEURS

Méthode : Construire un point défini à partir de vecteurs. Vidéo https://youtu.be/zcQPz4dfnn0. A partir du parallélogramme ABCD construire les points E



Barycentre

3 janv. 2011 OB. PAUL MILAN. 3 janvier 2011. PREMIÈRE S. Page 10. 10. 3 BARYCENTRE DE TROIS POINTS. Cette formule dépend directement de la formule de ...



Vecteurs et colinéarité I. Vocabulaire et définitions

Par conséquent les deux vecteurs sont colinéaires. Conclusion : Les trois points I



Isométries du plan

Comme annoncé les points qui deviennent inutiles si l'on fait cette hypoth`ese supplémentaire sont signalé par le signe (?). 3. Page 4. Démonstration. 1) 



Calcul vectoriel – Produit scalaire

DÉMONSTRATIONS CLÉS Exercices 5 et 6 Soit A B



Les similitudes

7 févr. 2011 Soit M un point sur le cercle (C ) et M son image par S alors les points. M B et M sont alignés. Démonstration : On a donc la configuration ...

1 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

VECTEURS ET REPÉRAGE

Tout le cours en vidéo : https://youtu.be/9OB3hct6gak

Partie 1 : Repère du plan

Trois points du plan non alignés O, I et J forment un repère, que l'on peut noter (O, I, J). L'origine O et les unités OI et OJ permettent de graduer les axes (OI) et (OJ).

Si on pose í µâƒ— = í µí µ

et í µâƒ— = í µí µ , alors ce repère se note également (O, í µâƒ— ,

Définitions :

- On appelle repère du plan tout triplet (O, í µâƒ—, í µâƒ—) où O est un point et í µâƒ— et í µâƒ— sont deux vecteurs non

colinéaires.

- Un repère est dit orthogonal si í µâƒ— et í µâƒ— ont des directions perpendiculaires.

- Un repère est dit orthonormé s'il est orthogonal et si í µâƒ— et í µâƒ— sont de norme 1.

TP info : Lectures de coordonnées :

Partie 2 : Coordonnées d'un vecteur

Exemple :

Vidéo https://youtu.be/8PyiMHtp1fE

Pour aller de A vers B, on parcourt un chemin :

3 unités vers la droite et 2 unités vers le haut.

Ainsi í µí µ

=3í µâƒ—+2í µâƒ—.

Les coordonnées de í µí µ

se notent . 3 2 / ou (3;2). On préfèrera la première notation.

í µâƒ— O í µâƒ— Repère orthogonal í µâƒ— O í µâƒ— Repère orthonormé í µâƒ— O í µâƒ— Repère quelconque í µâƒ— í µâƒ— I J O

2 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Déterminer les coordonnées d'un vecteur par lecture graphique

Vidéo https://youtu.be/8PyiMHtp1fE

a) Dans le repère (O, í µâƒ—, í µâƒ—), placer les points í µ. -1 -2 -2 3 1 -4 4 -2 b) Déterminer les coordonnées des vecteurs í µí µ et í µí µ par lecture graphique.

Correction

On a :

=-í µâƒ—+5í µâƒ— donc í µí µ a pour coordonnées . -1 5 =3í µâƒ—+2í µâƒ— donc í µí µ a pour coordonnées . 3 2

Propriété :

Soit deux points í µ.

/ et í µ.

Le vecteur í µí µ

a pour coordonnées . Méthode : Déterminer les coordonnées d'un vecteur par calcul

Vidéo https://youtu.be/wnNzmod2tMM

Calculer les coordonnées des vecteurs í µí µ et í µí µ , tels que : 2 1 5 3 -1 -2 -2 3 1 -4 / et í µ. 4 -2

Correction

5-2 3-1 3 2 -2- -1 3- -2 A = . -1 5 4-1 -2- -4 A = . 3 2

3 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Propriétés :

Soit deux vecteurs 𝐼⃗.

/ et í µâƒ—í±¦

A, et un réel í µ.

On a :

A í µí µí°¼âƒ— í±¦

A -𝐼⃗.

𝐼⃗ et í µâƒ— sont égaux lorsque í µ=í µâ€² et í µ=í µâ€². Méthode : Appliquer les formules sur les coordonnées de vecteurs

Vidéo https://youtu.be/rC3xJNCuzkw

En prenant les données de la méthode précédente, calculer les coordonnées des vecteurs 3í µí µ

4í µí µ

et 3í µí µ -4í µí µ

Correction

On a : í µí µ

3 2 / et í µí µ -1 5

3í µí µ

3×3

3×2

9 6 /, 4í µí µ 4× -1

4×5

-4 20

3í µí µ

-4í µí µ 9- -4 6-20 13 -14 Méthode : Calculer les coordonnées d'un point défini par une égalité vectorielle

Vidéo https://youtu.be/eQsMZTcniuY

Soit les points í µ.

1 2 -4 3 1 -2

Déterminer les coordonnées du point í µ tel que í µí µí µí µ soit un parallélogramme.

Correction

í µí µí µí µ est un parallélogramme si et seulement si í µí µ

On pose .

/ les coordonnées du point í µ.

On a alors : í µí µ

-4-1 3-2 -5 1 / et í µí µ

1-í µ

-2-í µ A

Donc : 1-í µ

=-5 et -2-í µ =1 =-5-1 et -í µ =1+2 =6 et í µ =-3.

Les coordonnées du point í µ sont donc .

6 -3

4 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 3 : Colinéarité de deux vecteurs

1. Critère de colinéarité

Propriété : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que : í µí µ'-í µí µ'=0.

Remarque : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que les coordonnées des deux

vecteurs sont proportionnelles soit : í µí µ'=í µí µ'.

Démonstration au programme :

Vidéo https://youtu.be/VKMrzaiPtw4

• Si l'un des vecteurs est nul alors l'équivalence est évidente. • Supposons maintenant que les vecteurs 𝐼⃗ et í µâƒ— soient non nuls.

Dire que les vecteurs 𝐼⃗.

/ et í µâƒ—í±¦ A sont colinéaires équivaut à dire qu'il existe un nombre réel í µ tel que 𝐼⃗ =í µí µâƒ—.

Les coordonnées des vecteurs 𝐼⃗ et í µâƒ— sont donc proportionnelles et le tableau ci-dessous est un

tableau de proportionnalité : Donc : í µí µ'=í µí µ' soit encore í µí µ'-í µí µ'=0. Réciproquement, si í µí µ'-í µí µ'=0. Le vecteur í µâƒ— étant non nul, l'une de ses coordonnées est non nulle. Supposons que í µ'≠0. Posons alors í µ= . L'égalité í µí µ'-í µí µ'=0 s'écrit : í µí µ'=í µí µ'.

Soit : í µ =

Comme on a déjà í µ = í µí µâ€², on en déduit que 𝐼⃗ =í µí µâƒ—.

Méthode : Vérifier si deux vecteurs sont colinéaires

Vidéo https://youtu.be/eX-_639Pfw8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. 4 -7 / et í µâƒ—. -12 21
/ b) 𝐼⃗. 5 -2 / et í µâƒ—. 15 -7

Correction

a) í µí µ'-í µí µ'=4×21- -7 -12 =84-84=0.

Le critère de colinéarité est vérifié donc les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires.

On peut également observer directement que í µâƒ—=-3𝐼⃗.

5 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr b) í µí µ'-í µí µ'=5× -7 -2 15 =-35+30=-5≠0.

Le critère de colinéarité n'est pas vérifié donc les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

2. Déterminant de deux vecteurs

Définition : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Le nombre í µí µ'-í µí µ' est appelé déterminant des vecteurs 𝐼⃗ et í µâƒ—.

On note : í µí µí µ

Propriété : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que í µí µí µ

=0. Méthode : Vérifier si deux vecteurs sont colinéaires à l'aide du déterminant

Vidéo https://youtu.be/MeHOuwy81-8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. -6 10 / et í µâƒ—. 9 -15 / b) 𝐼⃗.quotesdbs_dbs47.pdfusesText_47
[PDF] MATHS 1ÈRE S produit scalaire

[PDF] maths 1ere s second degré controle

[PDF] maths 1ere st2s fonctions

[PDF] maths 1ere sti2d hachette corrigé

[PDF] MATHS 1ère STMG - Statistiques

[PDF] Maths 1ère STMG Statistiques

[PDF] Maths 2de travail sans calculette

[PDF] maths 2nd

[PDF] Maths 2nd besoin d'aide

[PDF] Maths 2nd urgent

[PDF] Maths 2nde

[PDF] Maths 2nde exercice

[PDF] maths 2nde exercices

[PDF] maths 2nde Résolution approchée par balayage

[PDF] maths 2nde résolution d'équation