[PDF] Cours de probabilités et statistiques





Previous PDF Next PDF



PROBABILITES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. PROBABILITES. Activités conseillées. Activité conseillée p290 n°1 : Probabilité ou certitude ?



PROBABILITÉS CONDITIONNELLES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. PROBABILITÉS. CONDITIONNELLES. I. Exemple d'introduction. Un laboratoire pharmaceutique a 



PROBABILITÉS CONDITIONNELLES ET INDÉPENDANCE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. PROBABILITÉS CONDITIONNELLES. ET INDÉPENDANCE. Tout le cours en vidéo : https://youtu.be/ 



PROBABILITÉS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. PROBABILITÉS. En 1654 Blaise Pascal (1623 ; 1662) entretient avec Pierre de.



Cours de probabilités et statistiques

Enfin la somme des probabilités de tous les éléments de ? est 1. Important : rappelons qu'un événement n'est rien d'autre qu'une partie de ?. Une proba- bilité 



PROBABILITÉS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. PROBABILITÉS exposer une théorie nouvelle : les calculs de probabilités.



PROBABILITÉS

2°) a) Quelle est la probabilité de chacun des év énements suivants ? F : « l'élève est une fille » M : « l'élève est en spécialité maths ». b) Quelle 



PROBABILITÉS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. PROBABILITÉS. Tout le cours en vidéo : https://youtu.be/CBtj0nLx-N4.



PROBABILITÉS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. PROBABILITÉS. Tout le cours en vidéo : https://youtu.be/dvx_O37gfyY.



Introduction aux probabilités et à la statistique Jean Bérard

La théorie des probabilités constitue un cadre mathématique pour la description du hasard et de la variabilité ainsi que pour le raisonnement en univers 

Stage ATSM - Ao^ut 2010

Cours de probabilit

´es et statistiques

A. Perrut

contact : Anne.Perrut@univ-lyon1.fr 2

Table des matiµeres

1 Le modµele probabiliste 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Trois autres lois discrµetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Loi de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Loi d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 La loi normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 La loi exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Fonction d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Intervalles de con¯ance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3

4TABLE DES MATIµERES

5 Tests statistiques 47

5.1 Tests d'hypothµeses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Test d'ajustement du chi-deux . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B Tables statistiques 61

C.1 Variable quantitative discrµete . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C.2 Variable quantitative continue . . . . . . . . . . . . . . . . . . . . . . . . . . 68 C.3 Variable qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapitre 1

Le modµele probabiliste

1.1 Introduction

Exemples :

- l'enfant µa na^³tre sera une ¯lle, - Proportion :

P(A) =3

6 = 1=2. Alors

P(¯lle) = limn!+1k

n n mais cette limite a-t-elle un sens? - Opinion : pour que l'OL soit championne de France? Dans ce cas, on ne peut pas rejouer le m^eme subjectif. 5

6CHAPITRE 1. LE MODµELE PROBABILISTE

Exemples :

\Lyon ne gagne pas". chi®re pair", ieA=f2;4;6g. jcelui du second.

B: \on obtient pile au deuxiµeme lancer" est

B=f(f;p;f);(f;p;p);(p;p;f);(p;p;p)g

le nombre de \face" obtenus. Alors, =f0;1;2;3g. Le modµele est beaucoup plus simple, notations vocabulaire ensembliste vocabulaire probabiliste ensemble plein ensemble vide A sous-ensemble de !2A !appartient µaA

A½B

Ainclus dansB

AimpliqueB

A[B AouB A\B intersection deAetB AetB A cou A A\B=;

AetBdisjoints

AetBincompatibles

Exemple : soit =f0;1;2g. ConstruisonsP().

P() =n

;;f0g;f1g;f2g;f0;1g;f0;2g;f1;2g;o telle que : -P(A) =X -P() =X !2P(!) = 1

0.95 :Ava trµes probablement se produire.

4.0 : incorrect.

-2 : incorrect.

0.5 : une chance sur deux.

8CHAPITRE 1. LE MODµELE PROBABILISTE

faire quelques calculs :

1) SiAetBsont incompatibles,P(A[B) =P(A) +P(B).

2)P(Ac) = 1¡P(A).

3)P(;) = 0.

5)P(A[B) =P(A) +P(B)¡P(A\B).

2) CommeAetAcsont incompatibles,1 =P() =P(A[Ac) =P(A) +P(Ac).

3)P(;) = 1¡P(;c) = 1¡P() = 0.

P i2NA i´ =X i2NP(Ai) - axiome 3 :P() = 1

1 =P() =X

!2P(!) =X !2p=p£card()

D'oµup=P(!) =1

card()

P(A) =X

!2AP(!) =card(A) card() dire : - choisir, par

P(BjA) =P(A\B)

P(A) Utilisation 2 : QuandP(BjA)etP(A)sont faciles µa trouver, on peut obtenirP(A\B). Exemple 6Une urne contientrboules rouges etvboules vertes. On en tire deux, l'une =frouge;verteg £ frouge;verteg rouge".

P(A\B) =P(BjA)P(A) =r¡1

r+v¡1¢r r+v

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

10CHAPITRE 1. LE MODµELE PROBABILISTE

preuve : CommeA[Ac= ,P(B) =P(B\(A[Ac)) =P((B\A)[(B\Ac)). OrB\A

P(B) =P(B\A) +P(B\Ac)

On garde le m^eme formalisme.

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

r¡1 r+v¡1¢r r+v+r r+v¡1¢v r+v =r r+v (i)[i2IAi= (ii) lesAisont deux µa deux incompatibles : pour tousi6=j,Ai\Aj=;.

P(B) =X

i2IP(BjAi)P(Ai) dans l'ordre chronologique. Nous allons maintenant voir une formule µa remonter le temps...

1etP(B)>0. Alors,

P(AjB) =P(BjA)P(A)

P(BjA)P(A) +P(BjAc)P(Ac)

preuve :

P(AjB) =P(A\B)

P(B)=P(BjA)P(A)

P(B) i2I,

P(AijB) =P(BjAi)P(Ai)

P j2IP(BjAj)P(Aj) bleaux sur informatique. Les tableaux deAcomportent des fautes dans 5,2% des cas et ceux deBdans 6,7% des cas. On prend un tableau au hasard. Il comporte des fautes. T T

F=\ le tableau comporte des fautes".

P(TAjF) =P(FjTA)P(TA)

P(FjTA)P(TA) +P(FjTB)P(TB)

P(A\B) =P(A)P(B)

P(BjA) =P(B)()P(AjB) =P(A)()P(A\B) =P(A)P(B)

Proposition 14Soit =E£FoµuEest de cardinalnetFde cardinalp. Supposons que

P(!) =P((x;y)) =1

card() =1 np =PE(fxg)PF(fyg) =fP;Fg £ f1;:::;6g

12CHAPITRE 1. LE MODµELE PROBABILISTE

8!2; P(!) =1

card() = 1=12 P N³ (!1;:::;!N)´ =P(!1)¢¢¢P(!N) surN. Pourtant, le nombre de combinaisons dont la somme fait 12 est le m^eme que le nombre de combinaisons dont la somme fait 11. Alors?

1.6 Exercices

3) On tire trois cartes dans un jeu .

suppose que

P(A[B) = 7=8; P(A\B) = 1=4; P(A) = 3=8:

CalculerP(B),P(A\Bc),P(B\Ac).

ros impairs ont chacun la m^eme chance d'appara^³tre, chance qui est deux fois plus grande hasard, et l'on observe que les quatre places libres se suivent. Est-ce surprenant?

1.6. EXERCICES13

Exercice 6 {SoientM1,M2,M3trois personnes. La premiµereM1dispose d'une infor- la transmet µaM3. Malheureusement, µa chaque fois que l'information est transmise, il y a le bon message? Et siM3transmet l'information dont il dispose µa une quatriµeme personneM4, quelle est elle re»coit un vaccin? daire? Exercice 8 |Dans une usine, la machine A fabrique 60% des piµeces, dont 2% sont C? Exercice 9 |Dans une jardinerie : 25% des plantes ont moins d'un an, 60% ont de 1 µa 2 ans, 25% ont des °eurs jaunes, 60% ont des °eurs roses, 15% ont des °eurs jaunes et moins d'un an, 3% ont plus de 2 ans et n'ont ni °eurs jaunes, ni °eurs roses. 15% de celles qui ont de 1 µa 2 ans, ont des °eurs jaunes, 15% de celles qui ont de 1 µa 2 ans, n'ont ni

°eurs jaunes ni °eurs roses. On suppose que les °eurs ne peuvent pas ^etre µa la fois jaunes

et roses. On choisit une plante au hasard dans cette jardinerie.

14CHAPITRE 1. LE MODµELE PROBABILISTE

Exercice 10 |Deux chau®eurs de bus se relaient sur la m^eme ligne. Lors d'une grµeve, le premier a60%de chances de faire grµeve et le second80%. Pendant la prochaine grµeve, Exercice 11 |Une loterie comporte 500 billets dont deux seulement sont gagnants.

Chapitre 2

PPP PPF PFP FPP FFP FPF PFF FFF

valeur deX

3 2 2 2 1 1 1 0

k(valeur prise parX)

3 2 1 0

fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg k(X=k) = 15 elle est ditecontinue(exemples : hauteur d'un arbre, distance de freinage d'une voiture souvent une formule, plut^ot qu'une liste. [X= 3] [X= 2] [X= 1] [X= 0] fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg

1/8 3/8 3/8 1/8

F(x) =P[X·x]

Exemple :Xest le nombre de Face quand on lance trois fois une piµece. On a vu que la loi deXest P[X= 0] = 1=8; P[X= 1] =P[X= 2] = 3=8; P[X= 3] = 1=8

D'oµu,

F(x) =8

>>>>>:0six <0;

1=8si0·x <1;

4=8si1·x <2;

7=8si2·x <3;

1six¸3

1)Fest croissante,

3) lim x! ¡1F(x) = 0;limx!+1F(x) = 1

E[X] =X

kkP[X=k] oµu on somme sur toutes les valeurskque peut prendreX.

E[g(X)] =X

kg(k)P[X=k] preuve : observons queg(X) =yssiX=xavecg(x) =y. Ainsi,

P(g(X) =y) =X

x:g(x)=yP(X=x)

E(Y) =X

yyP(Y=y) =X yX x:g(x)=yg(x)P(X=x) =X xg(x)P(X=x)

Var(X) =Eh

(X¡E[X])2i =X k(k¡E[X])2P[X=k] =E[X2]¡E[X]2 k2X()jkjP(X=k)<1 sa valeur moyenneE[X]. Exemple 18: nous avons la loi du nombreXde PILE quand on lance trois fois une piµece.

E[X] =3X

k=0kP[X=k] = 3¢1 8 + 2¢3 8 + 1¢3 8 + 0¢1 8 =12 8 =3 2

Var(X) =E[X2]¡E[X]2=3X

k=0k

2P[X=k]¡E[X]2

= 3

2¢1

8 + 22¢3 8 + 12¢3 8 + 02¢1 8

¡µ3

2 2 3 4 nbr de PILE [X= 3] [X= 2] [X= 1] [X= 0]

0.125 0.375 0.375 0.125

0.2 0.6 0.1 0.1

partir de quelques observations.

P[X=i;Y=j] =P[X=i]P[Y=j]

P[(X;Y) = (i;j)] =P[X=i;Y=j].

touti2X(),

P[X=i] =X

j2Y()P[X=ijY=j]P[Y=j]

SoitZ=X+Y. Quelle est la loi deZ?

valeur que prendX, la valeur que prendYet la valeur deZ. XnY

1 2 3 4 5 6

1

2 3 4 5 6 7

2

3 4 5 6 7 8

3

4 5 6 7 8 9

4

5 6 7 8 9 10

5

6 7 8 9 10 11

6

7 8 9 10 11 12

pour tous1·i;j·6; P[X=i;Y=j] =P[X=i]P[Y=j] = 1=36

2] =P[Z= 12] = 1=36,P[Z= 3] =P[Z= 11] = 2=36,P[Z= 4] =P[Z= 10] = 3=36,

1·j·12.

P[Z=j] =6X

i=1P[Z=jjX=i]P[X=i] 1 6 6 X i=1P[X+Y=jjX=i] 1 6 6 X i=1P[Y=j¡ijX=i] 1 6 6 X i=1P[Y=j¡i] rappeler queP[Y=k] = 1=6seulement sikest dansf1;:::;6g. preuve : pour le premier point, il faut observer que X yP(X=x;Y=y) =P³ (X=x)\([y(Y=y))´ =P³ (X=x)\´ =P(X=x) et il vient

E[X+Y] =X

x;y(x+y)P(X=x;Y=y) X x;yxP(X=x;Y=y) +X x;yyP(X=x;Y=y) X xxP(X=x) +X yyP(Y=y) =E[X] +E[Y] Pour le second point, on montre tout d'abord queE(XY) =E(X)E(Y), la suite venant facilement. Ainsi,

E[XY] =X

x;yxyP(X=x;Y=y) X x;yxyP(X=x)P(Y=y) µX =E(X)E(Y)

P[Y= 1] =p; P[Y= 0] =q= 1¡p

Var(Y) =E[Y2]¡E[Y]2=E[Y]¡E[Y]2=p(1¡p).

conditions.

P(E) =q= 1¡p.

P(X=k) =µn

p k(1¡p)n¡kpour tout0·k·n oµu ¡n k¢=n! k!(n¡k)!.

P(!) =pk(1¡p)n¡k

Il en existe¡n

P(X=k) =X

!:X(!)=kP(!) = card(f!:X(!) =kg)pk(1¡p)n¡k µn p k(1¡p)n¡k np(1¡p). (preuve) AouB. Puis on le remet dans le lot et on recommence : on choisit µa nouveau un individu binomialeB(n;NA=N). loi binomialeB(4;p).

P(X= 0) =¡4

0¢q4=q4,

P(X= 1) =¡4

1¢p1q3= 4pq3,

P(X= 2) =¡4

2¢p2q2= 6p2q2,

P(X= 3) =¡4

3¢p3q1= 4p3q,

P(X= 4) =¡4

4¢p4=p4.

Pourp= 1=5, on obtient les va-

leurs :0 1 2 3 4

0.0 0.1 0.2 0.3 0.4

Loi binomiale pour n=4, p=1/5

valeurs de X probabilites

Voici d'autres exemples.

0 1 2 3 4 5

0.05 0.15 0.25

Loi binomiale pour n=5, p=0.5

valeurs de X probabilitesquotesdbs_dbs47.pdfusesText_47
[PDF] maths : les suites geometriques

[PDF] Maths : les vecteurs

[PDF] maths : limite et continuité

[PDF] maths : limite infinie

[PDF] Maths : polynomes du second degré

[PDF] Maths : Pourcentage*

[PDF] Maths : Probabilité 2nd ( Besoin d'une simple correction ;) )

[PDF] Maths : Problèmes de fractions

[PDF] Maths : Quelle fraction de cette année representent tous les dimanches

[PDF] Maths : Résolution Algébrique

[PDF] Maths : S'il vous plaît !

[PDF] Maths : S'il vous plaît avant mon Ds

[PDF] Maths : Simplifier des fractions

[PDF] Maths : Solutions d'équations

[PDF] Maths : Suite récurrente