[PDF] FONCTIONS COSINUS ET SINUS Yvan Monka – Académie de





Previous PDF Next PDF



VARIATIONS DUNE FONCTION

Déterminer par calcul une expression de la fonction telle que : (?2) = 4 et (3) = 1. Page 7. 7 sur 11. Yvan Monka – Académie de Strasbourg – www.maths- 



FONCTIONS COSINUS ET SINUS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus il.



FONCTIONS EXPONENTIELLES

c) Tracer la courbe représentative de la fonction f en s'aidant de la calculatrice graphique. d) Déterminer une valeur approchée de l'abscisse du point d' 



FONCTION EXPONENTIELLE ET FONCTION LOGARITHME

c) Déterminer une équation de la tangente à la courbe au point d'abscisse 0. d) Tracer la courbe représentative de la fonction f en s'aidant de la calculatrice.



FONCTION LOGARITHME NEPERIEN

comprendre qu'à cette époque les calculatrices n'existent évidemment pas



FONCTIONS EXPONENTIELLES (Partie 2)

d) Tracer la courbe représentative de la fonction f en s'aidant de la calculatrice. a) b) Comme. est du signe de . f est donc décroissante sur l' 



LES FONCTIONS DE RÉFÉRENCE

Définition : Une fonction dont la courbe est symétrique 3) Vérifier par calcul le résultat de la question 2b. ... Démonstration au programme :.



FONCTIONS POLYNÔMES DE DEGRÉ 2

c) les coordonnées de son extremum. Placer au fur et à mesure ces éléments géométriques dans un repère puis tracer la parabole représentant la fonction .



FONCTION INVERSE

Remarque : La courbe d'équation = de la fonction inverse Démonstration (pour les experts) : ... A l'aide de la calculatrice



FONCTIONS AFFINES (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS AFFINES (Partie 2). I. Fonction affine et droite associée.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTIONS COSINUS ET SINUS I. Rappels 1) Définitions : Dans le plan muni d'un repère orthonormé

O;i ;j

et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x. À ce point, on fait correspondre un point M sur le cercle trigonométrique. On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M. Définitions : - Le cosinus du nombre réel x est l'abscisse de M et on note cosx. - Le sinus du nombre réel x est l'ordonnée de M et on note sinx. Propriétés : Pour tout nombre réel x, on a : 1)

2)

3) cos2 x + sin2 x= 1 2) Valeurs remarquables des fonctions sinus et cosinus : x 0

6 4 3 2 cosx 1 3 2 2 2 1 2

0 -1 sinx

0 1 2 2 2 3 2 1 0

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2II. Propriétés des fonctions cosinus et sinus 1) Périodicité Propriétés : 1)

cosx=cosx+2kπ où k entier relatif 2) sinx=sinx+2kπ où k entier relatif Démonstration : Aux points de la droite orientée d'abscisses x et x+2kπ

ont fait correspondre le même point du cercle trigonométrique. Remarque : On dit que les fonctions cosinus et sinus sont périodiques de période

. Conséquence : Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur

et de la compléter par translation. Méthode : Résoudre une équation trigonométrique Vidéo https://youtu.be/PcgvyxU5FCc Résoudre dans

l'équation cos 2 x= 1 2 cos 2 x= 1 2 ⇔cos 2 x- 1 2 =0 ⇔cosx- 2 2 cosx+ 2 2 =0 ⇔cosx= 2 2 ou cosx=- 2 2 ⇔cosx=cos 4 ou cosx=cos 3π 4

Ainsi :

S= 4 +2k 1 4 +2k 2 3π 4 +2k 3 3π 4 +2k 4

πaveck

i

Soit :

S= 4 kπ 2 aveck∈!

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr32) Parité Propriétés : Pour tout nombre réel x, on a : 1)

cos(-x)=cosx 2) sin(-x)=-sinx

Remarque : On dit que la fonction cosinus est paire et que la fonction sinus est impaire. Définitions : Une fonction f est paire lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et

f(-x)=f(x)

. Une fonction f est impaire lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et

f(-x)=-f(x)

. Conséquences : - Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées. - Dans un repère orthogonal, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine. Méthode : Etudier la parité d'une fonction trigonométrique Vidéo https://youtu.be/hrbgxnCZW_I Démontrer que la fonction f définie sur

par f(x)=sinx-sin2x est impaire. Pour tout x réel, on a : f(-x)=sin-x -sin-2x =-sinx+sin2x =-f(x)

. La fonction f est donc impaire. Sa représentation graphique est symétrique par rapport à l'origine du repère. 3) Autres propriétés Propriétés : Pour tout nombre réel x, on a : 1)

cosπ+x =-cosx et sinπ+x =-sinx 2) cosπ-x =-cosx et sinπ-x =sinx 3) cos 2 +x =-sinx et sin 2 +x =cosx 4) cos 2 -x =sinx et sin 2 -x =cosx

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4 III. Dérivabilité et variations 1) Dérivabilité Propriété : Les fonctions cosinus et sinus sont dérivables en 0 et on a : cos'(0) = 0 et sin'(0)=1. - Admis - Théorème : les fonctions cosinus et sinus sont dérivables sur

et on a : cos'(x) = -sin(x) et sin'(x) = cos(x) Démonstration : - Soit x un nombre réel et h un nombre réel non nul.

cos(x+h)-cosx h cosxcosh-sinxsinh-cosx h =cosx cosh-1 h -sinx sinh h Or, cosinus et sinus sont dérivables en 0 de dérivées respectives 0 et 1 donc : lim h→0 cosh-1 h =0 et lim h→0 sinh h =1 donc lim h→0 cos(x+h)-cosx h =-sinx . - Soit x un nombre réel et h un nombre réel non nul. sin(x+h)-sinx h sinxcosh+cosxsinh-sinx h =sinx cosh-1 h +cosx sinh h Donc lim h→0 sin(x+h)-sinx h =cosx . 2) Variations x 0 π cos'x=-sinx

0 - 0

cosx

1 -1 x 0

2 sin'x=cosx

1 + 0 - -1

sinx

1 0 0

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5 3) Représentations graphiques Fonction cosinus Fonction sinus Méthode : Etudier une fonction trigonométrique Vidéos dans la Playlist : https://www.youtube.com/playlist?list=PLVUDmbpupCappSbh79E9sYg99vU5b_nBy On considère la fonction f définie sur

par f(x)=cos2x 1 2

. 1) Etudier la parité de f. 2) Démontrer que la fonction f est périodique de période π

. 3) Etudier les variations de f. 4) Représenter graphiquement la fonction f. YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr61) Pour tout x de , on a : f(-x)=cos-2x 1 2 =cos2x 1 2 =f(x)

La fonction f est donc paire. Dans un repère orthogonal, sa représentation graphique est donc symétrique par rapport à l'axe des ordonnées. 2) Pour tout x de

, on a : f(x+π)=cos2x+π 1 2 =cos2x+2π 1 2 =cos2x 1 2 =f(x) On en déduit que la fonction f est périodique de période π . 3) Pour tout x de , on a f'(x)=-2sin2x . Si x∈0; 2 , alors

2x∈0;π

et donc sin2x ≥0 . Donc si x∈0; 2 , alors . Ainsi f est décroissante sur 0; 2 . x 0 2 f'(x)

0 - 0

f(x) 1 2 3 2

4) Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs47.pdfusesText_47
[PDF] Maths : Trouver un énoncé avec f(x) = (x+4)² - (2x-5)², puis résoudre

[PDF] Maths : Vrai ou Faux dans un Tétraèdre

[PDF] Maths :( ( urgent )

[PDF] Maths :)

[PDF] Maths :/ Equations/Exercice

[PDF] maths :devoir maison

[PDF] Maths :Pourcentage :

[PDF] Maths ; La fréquence 3e

[PDF] maths a rendre

[PDF] maths a rendre3

[PDF] maths a tous prix

[PDF] MATHS AIDE

[PDF] maths aidez moi cest pour demain

[PDF] maths aidez moi plz

[PDF] mATHS algorithme informatique