[PDF] Mathematical Formula Handbook.pdf





Previous PDF Next PDF



Automatic Derivation Of Formulas Using Reforcement Learning

15?/08?/2018 formula derivation transformation is abstracted as a mapping of ... In the derivation of mathematical formulas in order for the formula.



Differentiation Formulas Integration Formulas

Differentiation Formulas d dx k = 0. (1) d dx. [f(x) ± g(x)] = f (x) ± g (x). (2) d dx. [k · f(x)] = k · f (x). (3) d dx. [f(x)g(x)] = f(x)g (x) + g(x)f (x) 



120803 Derivation of the formulas of annuities and perpetuities

An ordinary annuity is a stream of N equal cash flows paid at regular intervals. The mathematical derivation of the PV formula. The present value of an N-period 



Mathematical Formula Handbook.pdf

difference notation; Approximating to derivatives; Interpolation: Everett's formula; ... Speigel M.R.



Common Derivatives and Integrals

Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins. Derivatives. Basic Properties/Formulas/Rules.



Derivative Formulas

Basic Differentiation Formulas http://www.math.wustl.edu/~freiwald/Math131/derivativetable.pdf the “prime notion” in the other formulas as well).



Mathcentre

A rule exists for integrating products of functions and in the following section we will derive it. 2. Derivation of the formula for integration by parts. We 



MATH 1A - HOW TO DERIVE THE FORMULA FOR THE

05?/10?/2010 MATH 1A - HOW TO DERIVE THE FORMULA FOR THE DERIVATIVE OF. ARCCOS(X). PEYAM RYAN TABRIZIAN. Here is one example of a theory question you ...



Derivative Formulas

Basic Differentiation Formulas. In the table below and represent differentiable functions of ? œ 0?B?. @ œ 1?B?. B. Derivative of a constant.



Eulers Formula and Trigonometry

The central mathematical fact that we are interested in here is generally called Euler's formula allows one to derive the non-trivial trigonometric ...

3.MatrixAlgebra

Unitmatrices

zero,i.e.,(I)ij=

Products

(AB)ij=lå k=1A ikBkj

IngeneralAB6=BA.

Transposematrices

Inversematrices

(A1)ij=transposeofcofactorofAij jAj

Determinants

j

Aj=å

i,j,k,... ijk...A1iA2jA3k...

22matrices

IfA=ab

cd then, j

Aj=adbcAT=ac

bd A 1=1 jAj db ca

Productrules

(AB...N)T=NT...BTAT j

Orthogonalmatrices

matrixQ, Q

1=QT,jQj=1,QTisalsoorthogonal.

5

Solvingsetsoflinearsimultaneousequations

x=ATb.

Hermitianmatrices

Eigenvaluesandeigenvectors

Theneigenvalues

)=jAIj.IfAisHermitianthentheeigenvalues matrixA.

TrA=å

i i,alsojAj=Õ ii.

IfSisasymmetricmatrix,

U TSU= andS=UUT. correspondingeigenvalue.

Commutators

[A,B]ABBA [A,B]=[B,A] [A,B]y=[By,Ay] [A+B,C]=[A,C]+[B,C] [AB,C]=A[B,C]+[A,C]B [A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0

Hermitianalgebra

b y=(b 1,b

2,...)

MatrixformOperatorformBra-ketform

HermiticitybAc=(Ab)cZ

O=Z (O )h jOji

Eigenvalues,

realAui=(i)uiO i=(i) iOjii=ijii

Orthogonalityuiuj=0Z

i j=0hijji=0(i6=j)

Completenessb=å

iu i(uib) i i Z i ij iihiji

Rayleigh-Ritz

Lowesteigenvalue

0bAbbb0Z

O Z h jOj i h j i 6

Paulispinmatrices

x=01 10 ,y=0i i0 ,z=10 01 xy=iz,yz=ix,zx=iy,xx=yy=zz=I

4.VectorCalculus

Notation

polarcoordinates =(r,,');incaseswithradialsymmetry=(r). areindependentfunctionsofx,y,z. 6 6 6 6 6 6 6 7 7 7 7 7 7 7 5 grad =r,divA=rA,curlA=rA

Identities

grad(

1+2)grad1+grad2div(A1+A2)divA1+divA2

grad(

12)1grad2+2grad1

curl(A1+A2)curlA1+curlA2 div(

A)divA+(grad)A,curl(A)curlA+(grad)A

div(A1A2)A2curlA1A1curlA2 div(curlA)0,curl(grad )0 7

Grad,Div,CurlandtheLaplacian

Conversionto

Cartesian

z=rcos

Divergence

1 1 +1rsin

CurlrA

ijk A xAyAz 1 bb'1 bz A A'Az 1 r2sinbr1rsinb1 rb'

ArrArA'sin

Laplacian

r 2 1 +1 1 r +1r2sin sin 1 r2sin2

Transformationofintegrals

S=asurfacearea

=avolumecontainedbyaspeciedsurface b t=theunittangenttoCatthepointP b n=theunitoutwardpointingnormal

A=somevectorfunction

dL=thevectorelementofcurve(=btdL) dS=thevectorelementofsurface(=b ndS) ThenZ C

AbtdL=Z

C AdL andwhenA=r Z C (r )dL=Z C d

Gauss'sTheorem(DivergenceTheorem)

WhenSdenesaclosedregionhavingavolume

Z (rA)d=Z S (Ab n)dS=Z S AdS also Z (r)d=Z SdSZ (rA)d=Z S (b nA)dS 8

Stokes'sTheorem

WhenCisclosedandboundstheopensurfaceS,Z

S (rA)dS=Z C AdL also Z S (b nr )dS=Z CdL

Green'sTheorem

Z S rdS=Z r( r)d =Z r2+(r )(r)d

Green'sSecondTheorem

Z ( r2r2 )d=Z S [ (r)(r )]dS

5.ComplexVariables

Complexnumbers

Thecomplexnumberz=x+iy=r(cos

realquantityristhemodulusofzandtheangle r(cos isin)=rei;zz=jzj2=x2+y2

DeMoivre'stheorem

(cos +isin)n=ein=cosn+isinn

Powerseriesforcomplexvariables.

e z=1+z+z2

2!++znn!+convergentforallnitez

sinz=zz3

3!+z55!convergentforallnitez

cosz=1z2

2!+z44!convergentforallnitez

ln(1+z)=zz2

2+z33principalvalueofln(1+z)

tan1z=zz3 3+z55 (1+z)n=1+nz+n(n1)

2!z2+n(n1)(n2)3!z3+

9

6.TrigonometricFormulae

cos2A+sin2A=1sec2Atan2A=1cosec2Acot2A=1

1tan2A.

2 2 tan(AB)=tanAtanB

1tanAtanBsinAcosB=sin(A+B)+sin(AB)2

sinA+sinB=2sinA+B

2cosAB2

sinAsinB=2cosA+B

2sinAB2

cosA+cosB=2cosA+B

2cosAB2

cosAcosB=2sinA+B

2sinAB2cos2A=1+cos2A

2 sin2A=1cos2A 2 cos3A=3cosA+cos3A 4 sin3A=3sinAsin3A 4 a a

2=b2+c22bccosA

a=bcosC+ccosB cosA=b2+c2a2 2bc tanAB

2=aba+bcotC2

area=1 sina sinA=sinbsinB=sincsinC cosa=cosbcosc+sinbsinccosA cosA=cosBcosC+sinBsinCcosa 10

7.HyperbolicFunctions

coshx=1

2(ex+ex)=1+x22!+x44!+validforallx

sinhx=1

2(exex)=x+x33!+x55!+validforallx

coshix=cosxcosix=coshx sinhix=isinxsinix=isinhx tanhx=sinhx coshxsechx=1coshx cothx=coshx sinhxcosechx=1sinhx cosh2xsinh2x=1

Forlargepositivex:

coshxsinhx!ex 2 tanhx!1

Forlargenegativex:

coshxsinhx!ex 2 tanhx!1

Relationsofthefunctions

sinhx=sinh(x)sechx=sech(x) coshx=cosh(x)cosechx=cosech(x) tanhx=tanh(x)cothx=coth(x) sinhx=2tanh(x=2)

1tanh2(x=2)=tanhxq

1tanh2xcoshx=1+tanh2(x=2)1tanh2(x=2)=1q

1tanh2x

tanhx=q

1sech2xsechx=q1tanh2x

cothx=q cosech2x+1cosechx=qcoth2x1 sinh(x=2)=r coshx1

2cosh(x=2)=r

coshx+1 2 tanh(x=2)=coshx1 sinhx=sinhxcoshx+1 sinh(2x)=2sinhxcoshxtanh(2x)=2tanhx

1+tanh2x

tanh(3x)=3tanhx+tanh3x

1+3tanh2x

11 sinh(xy)=sinhxcoshycoshxsinhy cosh(xy)=coshxcoshysinhxsinhy tanh(xy)=tanhxtanhy

1tanhxtanhy

sinhx+sinhy=2sinh1 sinhxsinhy=2cosh1 sinhxcoshx=1tanh(x=2)

1tanh(x=2)=ex

tanhxtanhy=sinh(xy) coshxcoshy cothxcothy=sinh(xy) sinhxsinhy

Inversefunctions

sinh1x a=ln x+p x2+a2 a! for1a2 sech1x a=ln0 @a x+s a2 x211

Afor0 cosech1x a=ln0 @a x+s a2 x2+11

Aforx6=0

8.Limits

n cxn!0asn!1ifjxj<1(anyxedc) x n=n!!0asn!1(anyxedx) (1+x=n)n!exasn!1,xlnx!0asx!0

Iff(a)=g(a)=0thenlimx!af(x)

g(x)=f0(a)g0(a)(l'Hˆopital'srule) 12

9.Differentiation

(uv)0=u0v+uv0,u v

0=u0vuv0v2

wherenCrn r =n! r!(nr)! d dx(sinx)=cosxddx(sinhx)=coshx d dx(cosx)=sinxddx(coshx)=sinhx d dx(tanx)=sec2xddx(tanhx)=sech2x d dx(secx)=secxtanxddx(sechx)=sechxtanhx d dx(cotx)=cosec2xddx(cothx)=cosech2x d

10.Integration

Standardforms

Z x ndx=xn+1 n+1+cforn6=1 Z 1 xdx=lnx+cZ lnxdx=x(lnx1)+c Z e axdx=1 aeax+cZ xeaxdx=eaxxa1a2 +c Z xlnxdx=x2 2 lnx12 +c Z 1 a2+x2dx=1atan1xa +c Z1 a2x2dx=1atanh1xa +c=12alna+xax +cforx2a2 Z x (x2a2)ndx=12(n1)1(x2a2)n1+cforn6=1 Z x x2a2dx=12ln(x2a2)+c Z1 pa2x2dx=sin1xa +c Z 1 px2a2dx=ln x+px2a2 +c Z x px2a2dx=px2a2+c Z p a2x2dx=12h xpa2x2+a2sin1xai +c 13 Z1 01 (1+x)xpdx=cosecpforp<1 Z 1

0cos(x2)dx=Z

1

0sin(x2)dx=1

2r 2 Z 1

1exp(x2=2

2)dx=p2

Z 1

1xnexp(x2=2

2)dx=8

:135(n1) n+1p2

0forn2andeven

forn1andoddZ sinxdx=cosx+cZ sinhxdx=coshx+c Z cosxdx=sinx+cZ coshxdx=sinhx+c Zquotesdbs_dbs47.pdfusesText_47

[PDF] Maths Développement et reduction

[PDF] Maths Devoir 1

[PDF] Maths Devoir 1 / 2NDE CNED

[PDF] Maths devoir 1 CNED exercice 4

[PDF] maths devoir 1 seconde exercice 4

[PDF] Maths Devoir 11 3ème Exercice 2

[PDF] Maths devoir 11 suite

[PDF] maths devoir 12 CNED

[PDF] Maths devoir 2 cned seconde

[PDF] Maths Devoir 4 (Exercice 3 et 4) Cned 3eme !

[PDF] MATHS Devoir 4 de quatrième au cned

[PDF] Maths devoir 4 exercice 3

[PDF] Maths Devoir 4 exercices 2 et 4 et5

[PDF] maths devoir 6 de 3eme cned

[PDF] Maths devoir 6 exercice 2-a)b) CNED