[PDF] FONCTIONS COSINUS ET SINUS





Previous PDF Next PDF





Traduction anglaise des termes mathématiques

29 mars 2015 argument d'un nombre complexe : ... centre du cercle circonscrit à un triangle : circumcenter of a triangle ... dérivée d'ordre supérieure :.



Synthèse de trigonométrie

est le centre du cercle et dont le premier côté est la demi-droite [OI. Le sinus et le cosinus d'un angle orienté sont compris entre -1 et 1. Remarque.



Synthèse de trigonométrie

1.3 Sinus et cosinus d'un angle orienté. À chaque angle on associe 4 grandeurs appelées nombres trigonométriques : le sinus



Intégrales de fonctions de plusieurs variables

Calculer la dérivée d'une fonction est toujours possible et relativement facile : il suffit d'appli- quer un certain nombre de r`egles de calcul bien 



LATEX pour le prof de maths !

11 janv. 2021 8.16.2 Alignement de nombres sur le point décimal . ... 13.7 Tangentes en un point et fonctions dérivées . ... saut d'une demi-ligne.



trigonometrie-exercices-corriges.pdf

cos ABC = 1) Placer sur le cercle trigonométriques ci-dessous les points M tels que ... En utilisant la définition du nombre dérivé



FONCTIONS COSINUS ET SINUS

À ce point on fait correspondre un point M sur le cercle trigonométrique. Le cosinus du nombre réel x est l'abscisse de M et on note cos x.



Cours de mathématiques - Exo7

Le triangle de Pascal est un algorithme pour calculer ces coefficients ( côté 1 est le nombre irrationnel 2 ; la circonférence d'un cercle de rayon 1.



Mathématiques

Le nombre dérivé est défini comme limite du Si l'on considère le demi-cercle de rayon 1 formé des points d'ordonnées positives tout point M(x

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTIONS COSINUS ET SINUS I. Rappels 1) Définitions : Dans le plan muni d'un repère orthonormé

O;i ;j

et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x. À ce point, on fait correspondre un point M sur le cercle trigonométrique. On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M. Définitions : - Le cosinus du nombre réel x est l'abscisse de M et on note cosx. - Le sinus du nombre réel x est l'ordonnée de M et on note sinx. Propriétés : Pour tout nombre réel x, on a : 1)

2)

3) cos2 x + sin2 x= 1 2) Valeurs remarquables des fonctions sinus et cosinus : x 0

6 4 3 2 cosx 1 3 2 2 2 1 2

0 -1 sinx

0 1 2 2 2 3 2 1 0

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2II. Propriétés des fonctions cosinus et sinus 1) Périodicité Propriétés : 1)

cosx=cosx+2kπ où k entier relatif 2) sinx=sinx+2kπ où k entier relatif Démonstration : Aux points de la droite orientée d'abscisses x et x+2kπ

ont fait correspondre le même point du cercle trigonométrique. Remarque : On dit que les fonctions cosinus et sinus sont périodiques de période

. Conséquence : Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur

et de la compléter par translation. Méthode : Résoudre une équation trigonométrique Vidéo https://youtu.be/PcgvyxU5FCc Résoudre dans

l'équation cos 2 x= 1 2 cos 2 x= 1 2 ⇔cos 2 x- 1 2 =0 ⇔cosx- 2 2 cosx+ 2 2 =0 ⇔cosx= 2 2 ou cosx=- 2 2 ⇔cosx=cos 4 ou cosx=cos 3π 4

Ainsi :

S= 4 +2k 1 4 +2k 2 3π 4 +2k 3 3π 4 +2k 4

πaveck

i

Soit :

S= 4 kπ 2 aveck∈!

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr32) Parité Propriétés : Pour tout nombre réel x, on a : 1)

cos(-x)=cosx 2) sin(-x)=-sinx

Remarque : On dit que la fonction cosinus est paire et que la fonction sinus est impaire. Définitions : Une fonction f est paire lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et

f(-x)=f(x)

. Une fonction f est impaire lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et

f(-x)=-f(x)

. Conséquences : - Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées. - Dans un repère orthogonal, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine. Méthode : Etudier la parité d'une fonction trigonométrique Vidéo https://youtu.be/hrbgxnCZW_I Démontrer que la fonction f définie sur

par f(x)=sinx-sin2x est impaire. Pour tout x réel, on a : f(-x)=sin-x -sin-2x =-sinx+sin2x =-f(x)

. La fonction f est donc impaire. Sa représentation graphique est symétrique par rapport à l'origine du repère. 3) Autres propriétés Propriétés : Pour tout nombre réel x, on a : 1)

cosπ+x =-cosx et sinπ+x =-sinx 2) cosπ-x =-cosx et sinπ-x =sinx 3) cos 2 +x =-sinx et sin 2 +x =cosx 4) cos 2 -x =sinx et sin 2 -x =cosx

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4 III. Dérivabilité et variations 1) Dérivabilité Propriété : Les fonctions cosinus et sinus sont dérivables en 0 et on a : cos'(0) = 0 et sin'(0)=1. - Admis - Théorème : les fonctions cosinus et sinus sont dérivables sur

et on a : cos'(x) = -sin(x) et sin'(x) = cos(x) Démonstration : - Soit x un nombre réel et h un nombre réel non nul.

cos(x+h)-cosx h cosxcosh-sinxsinh-cosx h =cosx cosh-1 h -sinx sinh h Or, cosinus et sinus sont dérivables en 0 de dérivées respectives 0 et 1 donc : lim h→0 cosh-1 h =0 et lim h→0 sinh h =1 donc lim h→0 cos(x+h)-cosx h =-sinx . - Soit x un nombre réel et h un nombre réel non nul. sin(x+h)-sinx h sinxcosh+cosxsinh-sinx h =sinx cosh-1 h +cosx sinh h Donc lim h→0 sin(x+h)-sinx h =cosx . 2) Variations x 0 π cos'x=-sinx

0 - 0

cosx

1 -1 x 0

2 sin'x=cosx

1 + 0 - -1

sinx

1 0 0

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5 3) Représentations graphiques Fonction cosinus Fonction sinus Méthode : Etudier une fonction trigonométrique Vidéos dans la Playlist : https://www.youtube.com/playlist?list=PLVUDmbpupCappSbh79E9sYg99vU5b_nBy On considère la fonction f définie sur

par f(x)=cos2x 1 2

. 1) Etudier la parité de f. 2) Démontrer que la fonction f est périodique de période π

. 3) Etudier les variations de f. 4) Représenter graphiquement la fonction f. YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr61) Pour tout x de , on a : f(-x)=cos-2x 1 2 =cos2x 1 2 =f(x)

La fonction f est donc paire. Dans un repère orthogonal, sa représentation graphique est donc symétrique par rapport à l'axe des ordonnées. 2) Pour tout x de

, on a : f(x+π)=cos2x+π 1 2 =cos2x+2π 1 2 =cos2x 1 2 =f(x) On en déduit que la fonction f est périodique de période π . 3) Pour tout x de , on a f'(x)=-2sin2x . Si x∈0; 2 , alors

2x∈0;π

et donc sin2x ≥0 . Donc si x∈0; 2 , alors . Ainsi f est décroissante sur 0; 2 . x 0 2 f'(x)

0 - 0

f(x) 1 2 3 2

4) Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs47.pdfusesText_47
[PDF] Maths, devoir maison

[PDF] Maths, DM sur les fonctions

[PDF] maths, dm sur pavé

[PDF] Maths, Exercice sur la borne kilométrique, valeur de x

[PDF] Maths, exercice sur la sécurité routière

[PDF] MATHS, livre phare 3éme

[PDF] Maths, muliplication nb relatifs ! HELP !

[PDF] maths, triplets pythagoriciens

[PDF] maths, urgent svp

[PDF] Maths- 1ere

[PDF] Maths-2nde

[PDF] maths-calculer une expression+problèmes

[PDF] maths-électricité

[PDF] maths-évolutions 1ere

[PDF] Maths-Operations