[PDF] CORRECTIONS Déclic Maths Fonctions polynômes du second





Previous PDF Next PDF



Théorie du signal

la théorie du signal est l'ensemble des outils mathématiques qui permet de décrire les signaux et les bruits émis 2.5.1 Fonctions rectangle et triangle.



Prédicats de triangles [ge02] - Exercice résolu

Un triangle est rectangle si le carré de l'hypoténuse (le côté le plus long) La fonction valeur absolue abs(x) est définie dans la biblioth`eque math.



Dans un triangle rectangle isocèle

ABC est un triangle rectangle isocèle en A de sens direct. Que peut-on dire du triangle MIN ? ... 6) Etude d'une fonction polynôme de degré 2.



CORRECTIONS Déclic Maths Fonctions polynômes du second

On a dans ce cas AM = AN = 3 et le triangle est isocèle rectangle en A. • Bilan 8. 1) Les coordonnées d'un point de la courbe représentative d'une fonction 



Bases dalgorithmique

Programme Python :Triangle rectangle en C . . qui contient plus de fonctions mathématiques notamment la mise au carré : AB**2 signifie AB2.



Intégrales de fonctions de plusieurs variables

Si f est une fonction d'une variable l'intégrale de f sur un intervalle [a



Aire maximale dans un triangle

Mathématiques : • Connaissances mobilisées des années antérieures : aire d'un rectangle théorème de. Pythagore



NOTION DE FONCTION

p151 n°17 à 21 x. 5 – x. Page 2. 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 4) On cherche la valeur de x pour laquelle l'aire du rectangle 



TRIGONOMÉTRIE (Partie 1)

a) ABC est un triangle rectangle en B. Calculer : b) Calculer ce rapport dans d'autres Méthode : Utiliser les fonctions cos et cos-1 sur la calculatrice.



ANGLES DANS LE TRIANGLE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. ANGLES DANS LE TRIANGLE sommets du triangle pour former un rectangle. On constate que :.

1 re

CORRECTIONSDéclic Maths

Fonctionspolynômesduseco nddegré.Equations

Correctiondesexercicesbilan page37

•Bilan1

1)Onaf(x)=(m!1)x

2 !2mx+m+2 festunp olynômedu seconddegrésiet seulements ilecoe!cientdutermeen x 2 est nonnul;ici m!1"=0doncD=R\{1}

2)(a)-1estu ne racine#f(!1)=0

#m!1+2m+m+2=0 #4m=!1 #m= !1 4 (b)fadmetuneraci neuniquesi etseulementsisondi scriminantestnul. ici!=b 2 !4ac=0#(!2m) 2 !4(m!1)(m+2)=0 #4m 2 !4(m 2 +m!2)=0 #m=2 (c)fadmetdeuxracin esdistinctes sietseulementsisondiscr iminanteststrictement positif. ici!=b 2 !4ac>0#(!2m) 2 !4(m!1)(m+2)>0 #!4(m!2)>0 #m!2<0 #m<2 (d)fsefactorisepar x!2sietseulemen tsi 2estuneracine. f(2)=0 #4(m!1)!4m+m+2=0 #4m!4!4m+m+2=0 #m=2 (e)Lasomme desracinesvaut S= !b a 2m m!1 =6

2m=6m!6

m= 3 2 (f)Leproduit desracinesvaut P= c a m+2 m!1 =!1 m+2=!m+1 m=! 1 2 •Bilan3

1)Aprèsav oircalculerlediscriminant,ontro uveque-2et

1 2 sontlesracine sde f, doncf(x)=2(x+2) x! 1 2 =(x+2)(2x!1). Aprèsav oircalculerlediscriminant,ontro uveque4et 1 2 sontlesracinesdeg, doncg(x)=2(x!4) x! 1 2 =(x!4)(2x!1). 2) 1 f(x) 1 g(x) 1 (x+2)(2x!1) 1 (x!4)(2x!1)

1(x!4)+x(x+2)

(x+2)(x!4)(2x!1) x 2 +3x!4 (x+2)(x!4)(2x!1) (x+4)(x!1) (x+2)(x!4)(2x!1)

Doncl'équation

1 f(x) 1 g(x) =0admetdeuxsolu tions-4et1. •Bilan5

1)Enno tantpleprixinitia ldemandé auxélèves,o na:

x$p=168pourlaprem ièrev ersionet (x!2)(p+0,40)=168

Onad oncp=

168
x etp= 168
x!2 !0,4

2)Ils'agitde résoudr eunsy stèmededeuxéquationsàdeux inconnuesq uiseramèneà

uneéquatio nduseconddegré.Ona alors :0,4x 2 !0,8x!336=0 Ontr ouve!=538,24etlesdeux solutionssont -28et30. Seulelasolution positive n'esten visageable.Ilyadonc30élèvesdans laclasse. •Bilan6

1)a)Onpose AM=xdoncAN=6!x.

L'airedutriang levau tici

AM$AN 2

Onch ercheàrésoudre

x(6!x) 2 =10soit!x 2 +6x!20=0 dontlediscriminant estnégatif.Il n'ya doncpasun teltriangled'aire 10cm 2 b)Onch ercheàrésoudre x(6!x) 2 =3soit!x 2 +6x!6=0dontlediscriminant vaut12.Les deuxsolut ionssont 3! 3et3+

3(lesrôles deAMetAN

s'échangent)

2)a)x&[0;6]

b)D'aprèslethéorèmedePyt hagor e,onaf(x)=x 2 +(6!x) 2 =2x 2 !12x+36

3)a)Onrésou tf(x)=16soit2x

2 !12x+20=0dontlediscriminantest négatif.

Donciln'yapa sdetel triangle AMNa vecMN=4cm.

b)Onrésou tf(x)=25soit2x 2 !12x+11=0dontlediscriminantv aut5 6.Il yadoncdeuxsolutionsAM= 6! 14 2 etAN= 6+ 14 2 etladeuxième en

échangeantlesrôlesdeAMetAN.

4)a)f(x)=2x

2 !12x+36=2(x 2 !6x)+36=2(x!3) 2 !18+36 =2(x!3) 2 +18 b)f(x)!f(3)=f(x)!18=2( x!3) 2 quiest toujours positifounul.

Doncf(x)!f(3)

c)Onad oncMN 2 !18commeun longueurestp ositiveMN!3 2. Onad ansce casAM=AN=3etletriangle estisocèle rectangleenA. •Bilan8

1)Lescoo rdonnéesd'unpointdelacourb ereprésenta tived'unefonctionfsontdela

forme(x;f(x));iciA(a; 1 a

2)Lepo intIestlemilieudusegmen t[AB].

x I x A +x B 2 doncx B =2x I !x A 7 2 !a y I y A +y B 2 doncy B =2y I !y A 7 3 1 a

Onab ienB

7 2 !a; 7 3 1 a

3)Lepo intBappartientàlacourb eCsietseulemen tsi sescoordonnéesvérifient

y B 1 x B .D'aprèslaquestionprécédente: 1 x B 1 7!2a 2 2 7!2a B&C# 2 7!2a 7a!3 3a #6a=(7!2a)(7a!3) #!14a 2 +49a!21=0
#2a 2 !7a+3=0=0

4)Ona!=25doncdeuxsolutio nsa

1 1 2 eta 2 =3.

Orcesd euxab scissessonttelles que

1 2 +3 2 7 4 =x I Doncilexiste deux pointsAetBa ppartenantà lecourbeCdontlemilieudusegmen t [AB]estlep ointI.

Fonctionspolynômesduseco nddegré,parabole

Correctiondesexercicesbilan page67

•Bilan1

1)Onconsi dèreunefonctionfdéfiniesurRparf(x)=!3x

2 +6x!4 a)Lediscriminan tdutrinômevaut !=36!3$4 2 =!12. Ilestnégat if,donc letrinômeestt oujoursdu signedea,icinégatif.

Ainsi,po urtoutx,f(x)<0.

b)Graphiquement,celasignifieque lacourbe sesitueen dessousdel'axe desabs- cisses.

2)f(x)=!3(x

2 !2x)!4=!3[(x!1) 2 !1]!4=!3(x!1) 2 +3!4=!3(x!1) 2 !1

3)Laforme canoniquenousp ermetd'a!rmerquel'a xedesymétrie estladroited'é qua-

tionx=1etquele sommetap ourcoordonnées (1;!1). 4)a) x!'1+' f !1 b)Enét udiantletableaudevariat ions,o npeutdireque: pourm!1,l'équationf(x)=mn'admetpasde solution.

5)Déterminerlesabsciss esdespo intsd'intersectiondelacourbeavecla droited'équation

y=!4revientàrésoudre l'équation f(x)=!4. !3x 2 +6x!4=!4 !3x 2 +6x=0

3x(!x+2)=0

Cetteéquatio nproduitadmetdeuxsoluti ons0et2quisontlesabsc issesdespoints d'intersection.Onpeutvérifier quef(0)= !4etf(2)= !4.Lespointsd'intersection sontdonc(0;!4)et(2;4).

6)Pourétudie rlapositionrelativede lacour beCparrapport àladroited'équation

f(x)!(!4x+3)=!3x 2 +6x!4+4x!3=!3x 2 +10x!7.

Lesracines decetrinômeso nt1 et

7 3 etcetrinôme estdusigne dea,icinégatif,à l'extérieurdesra cines.

DoncCestaudessus dela droitesur]1;

7 3 [et endessousde ladroite sur]!';1[(] 7 3 7) •Bilan3

1)Onal afigu resuiv ante:

a)Lepo intMappartientausegmen t[AB ],doncx&[0;6] b)Lestriang lesBMNetBAContdeuxangleséga ux,don cilss ontsembla bles.Donc BMNesta ussiisoc èlerectangle,ai nsiMB=MN=AP=6!x.

DoncA(x)=AM$AP=x(6!x)=!x

2 +6x

2)A(x)!8#!x

2 +6x!8!0

Lesracines decetrinômes ont2 et4.

Letrinôme estdusignede a,icinégatifàl'extérieurdesracines.

DoncA(x)!8pourx&[2;4]

3)A(x)"

1 4 AB$AC 2 A(x)" 1 4 36
2 !x 2 +6x! 9 2 "0

Lediscriminan tdecetrinômeva ut18.

Lesra cinesdecetrinômeso nt

!6!3 2 !2 =3+3 2 2 et3!3 2 2 Letrinôme estdusig nedea,icinégatifàl'extérieurdesracines.

DoncA(x)"

9 2 pourx& 0;3!3 2 2 3+3 2 2 ;6

4)A(x)=!x

2 +6x=!(x 2 !6x)=![(x!3) 2 !9]=!(x!3) 2 +9

Donconale tableaudev ariatio nssuiv ant:

x 036
f 9

5)Donconlitque lemaximume sta tteint po urx=3.

DanscecasMes taumil ieude[AB ]et AMNPestunc arré. •Bilan5

1)Lescoo rdonnéesdupointMsont (x;4!x

2 )etcellesde N(!x;4!x 2 Ainsilepérimèt redeMNPQ s'écrit:p(x)=2$2x+2$f(x)=4x+8!2x 2

2)p(x)=!2x

2 +4x+8=!2(x 2 !2x)+8=!2[(x!1) 2 !1]+8 =!2(x!1) 2 +10

3)Doncletrinômea dmet unmaximumen 1quivaut10.Lo rsquel'a bscissedupo intM

vaut1lepérim ètr edure ctangleMNPQestmaximumetvaut1 0. •Bilan7 Onconsi dèrelafonctionfdéfiniesur ]!1;+'[parf(x)= x 2 !x+1 x+1

1)Etudionslesignedelafon ction f.

x 2 !x+1apourdiscriminant-3, donccetrinômen'a dmetpas deracineetestto ujoursdusigne dea,icipositif.

Depluss url'inte rvalle]!1;+'[,onax+1>0.

Doncpour x&]!1;+'[,ona:f(x)>0etdoncla courbeCestsituéeau-dessus de l'axedesabscisses.

2)f(x)"1#f(x)!1"0

x 2 !x+1!x!1 x+1 "0 x 2 !2x x+1 "0 x(x!2) x+1 "0 x x x!2 x+1quotesdbs_dbs47.pdfusesText_47
[PDF] Maths: Inéquations produits

[PDF] Maths: LA COURBE REPRESENTATIVE

[PDF] maths: la fonction

[PDF] Maths: les dérives (convexité, double dérivés)

[PDF] Maths: les équations

[PDF] MATHS: petit exercice où il faut bien citer les propriétées (rectangle,

[PDF] Maths: Racine Carré

[PDF] Maths: Résolution graphique d'inéquations 2nde

[PDF] Maths: statistiques et probabilités

[PDF] maths: tache complexe

[PDF] Maths: Vrai/ Faux

[PDF] Maths:Devoir Maison

[PDF] Maths:Devoir Maison :Vitesse moyenne

[PDF] Maths:Devoir Maison:Développements

[PDF] Maths:Le toboggan: théorème de pythagore