[PDF] FONCTION INVERSE Yvan Monka – Académie de





Previous PDF Next PDF



FONCTION EXPONENTIELLE

f ' = f f (0) = 1 exp(0) = 1. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 2. Remarque : On prouvera dans le paragraphe II. que la 



FONCTION DERIVÉE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION DERIVÉE. I. Dérivées des fonctions usuelles. Exemple : Soit la fonction f définie sur 



FONCTION LOGARITHME NEPERIEN

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION LOGARITHME. NEPERIEN. En 1614 un mathématicien écossais



ACDSee 32 print job

semble des valeurs de la fonction) dans certains problèmes sur les Math. 1 p. 356



VARIATIONS DUNE FONCTION

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr On dit que la fonction f est croissante sur l'intervalle [0 ; 25] et décroissante sur.



FONCTIONS DE REFERENCE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 3) Fonction inverse. Définition : La fonction inverse est la fonction f définie sur R { }0 



CONTINUITÉ DES FONCTIONS

La fonction f est continue sur ]?? ; 5[ et sur [5 ; +?[. Page 3. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.



FONCTION INVERSE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION La courbe d'équation = de la fonction inverse appelée hyperbole de centre O



FONCTIONS EXPONENTIELLES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTIONS. EXPONENTIELLES. I. Fonction exponentielle de base q. 1) Définition.



Centrale PC 2020 Math 2 - Corrigé Fonction caractéristique dune

Centrale PC 2020 Math 2 - Corrigé I. Fonction caractéristique d'une variable aléatoire réelle ... + = Dgn par opérations sur les fonctions usuelles.

1

FONCTION INVERSE

Partie 1 : Définition et allure de la courbe

Vidéo https://youtu.be/Vl2rlbFF22Y

1) Définition

Définition : La fonction inverse est définie sur ℝ\ 0 par

2) Représentation graphique

Remarque : La courbe d'équation =

de la fonction inverse, appelée hyperbole de centre

O, est symétrique par rapport à l'origine.

Partie 2 : Dérivée et sens de variation

1) Dérivée

Propriété : La dérivée de la fonction inverse est définie sur ℝ\ 0 par -2 -1 0,25 1 2 3 -0,5 -1 4 1 0,5 1 3 2

Démonstration (pour les experts) :

Vidéo https://youtu.be/rQ1XfMN5pdk

Or : lim

= lim 1 Pour tout nombre , on associe le nombre dérivé de la fonction égal à - Ainsi, pour tout de ℝ\{0}, on a : 1 2

2) Variations

Propriété : La fonction inverse est décroissante sur -∞;0 et sur

0;+∞

Démonstration :

Pour tout de ℝ\

0 < 0.

Donc est décroissante sur

-∞;0 et sur

0;+∞

Partie 3 : Comportement de la fonction inverse aux bornes de son ensemble de définition

1) En +∞

On s'intéresse aux valeurs de

lorsque x devient de plus en plus grand. x 5 10 100 10000 ...

0,2 0,1 0,01 0,0001 ?

On constate que

se rapproche de 0 lorsque x devient de plus en plus grand. On dit que la limite de f lorsque x tend vers +∞ est

égale à 0 et on note :

lim =0.

Graphiquement, pour des valeurs de plus en plus

grandes, la courbe de se rapproche de plus en plus de l'axe des abscisses. 3

2) En -∞

On s'intéresse aux valeurs de

lorsque x devient de plus en plus " grand dans les négatifs » x ... -10000 -100 -10 -5 ? -0,0001 -0,01 -0,1 -0,2

On constate que

se rapproche de 0 lorsque x devient de plus en plus " grand dans les négatifs ». On dit que la limite de lorsque tend vers -∞ est égale à 0 et on note : lim =0. Graphiquement, pour des valeurs de plus en plus " grandes dans les négatifs », la courbe de se rapproche de plus en plus de l'axe des abscisses. On dit que l'axe des abscisses est une asymptote horizontale à la courbe de la fonction inverse en -∞ et en +∞.

3) Au voisinage de 0

L'image de 0 par la fonction n'existe pas. On s'intéresse cependant aux valeurs de lorsque x se rapproche de 0. x -0,5 -0,1 -0,01 -0,001 ... 0,001 0,01 0,1 0,5 -2 -10 -100 -1000 ? 1000 100 10 2

A l'aide de la calculatrice, on constate que :

- Pour >0 : devient de plus en plus grand lorsque se rapproche de 0. On dit que la limite de lorsque tend vers 0 pour >

0 est égale à +∞ et on note :

lim Graphiquement, pour des valeurs positives, de plus en plus en proches de 0, la courbe de se rapproche de plus en plus de l'axe des ordonnées. 4 - Pour <0 : devient de plus en plus " grand dans les négatifs » lorsque se rapproche de 0. On dit que la limite de lorsque tend vers 0 pour <0 est égale à -∞ et on note : lim

Graphiquement, pour des valeurs négatives, de

plus en plus en proches de 0, la courbe de se rapproche de plus en plus de l'axe des ordonnées. On dit que l'axe des ordonnées est une asymptote verticale à la courbe de la fonction inverse. - Si ′()≥0, alors est croissante. Méthode : Étudier une fonction obtenue par combinaisons linéaires de la fonction inverse et d'une fonction polynomiale

Vidéo https://youtu.be/P3Ui9-Pk8p8

Soit la fonction définie sur ℝ∖ 0 par =1-2-

1) Calculer la fonction dérivée de .

2) Déterminer le signe de ′ en fonction de .

3) Dresser le tableau de variations de .

4) Représenter la fonction dans un repère.

Correction

1) On a :

=1-2-2×

Rappels sur les formules de dérivation :

Fonction f Dérivée f '

=0 =2 0 =3 5

Donc :

=-2- 2× "- =-2+ -2 2 2

2) On commence par résoudre l'équation

()=0.

Soit : 2-2

=0

Donc : 2=2

Soit :

=1

Et donc : =1 ou =-1.

′ est du signe du numérateur car le dénominateur est positif. Le numérateur est une fonction du second degré représentée par une parabole sont les branches sont tournées vers le bas (=-2 est négatif). Elle est donc d'abord négative (avant =-1) puis positive (entre =-1 et =1) et à nouveau négative (après =1).

3) On dresse alors le tableau de variations en appliquant le théorème :

En effet :

-1 =1-2× -1 =5 1 =1-2×1- =-3

4) En testant, pour des valeurs négatives de plus en plus en proches de 0,

devient de plus en plus grand. Pour des valeurs positives, devient de plus en plus " grand dans les négatifs ». L'axe des ordonnées est une asymptote verticale à la courbe de la fonction . 6quotesdbs_dbs47.pdfusesText_47
[PDF] Maths: les dérives (convexité, double dérivés)

[PDF] Maths: les équations

[PDF] MATHS: petit exercice où il faut bien citer les propriétées (rectangle,

[PDF] Maths: Racine Carré

[PDF] Maths: Résolution graphique d'inéquations 2nde

[PDF] Maths: statistiques et probabilités

[PDF] maths: tache complexe

[PDF] Maths: Vrai/ Faux

[PDF] Maths:Devoir Maison

[PDF] Maths:Devoir Maison :Vitesse moyenne

[PDF] Maths:Devoir Maison:Développements

[PDF] Maths:Le toboggan: théorème de pythagore

[PDF] maths:Une relation efficace(fonction)

[PDF] mathsenligne correction

[PDF] mathusalem bible