[PDF] PRODUIT SCALAIRE DANS LESPACE Les vecteurs et ne sont





Previous PDF Next PDF



1°) Vecteurs orthogonaux. Définition. Soit vet deux vecteurs non

Montrer que (AB) et (CD) sont deux droites perpendiculaires. b) Soit A(3 ;-2) B(0 ;2) et C(-4 ;-1)



MAT 1200: Introduction à lalgèbre linéaire

On dit que deux vecteurs de IRn sont orthogonaux si leur produit scalaire est 2. )dv3 = (0



PRODUIT SCALAIRE

2. 62 + 72 ? 32. (. ) = 38. III. Produit scalaire et orthogonalité. 1) Vecteurs orthogonaux. Propriété : Les vecteurs u ! et v ! sont orthogonaux si et 



Calcul vectoriel – Produit scalaire

Les vecteurs DC et DA sont orthogonaux (les droites (DC) et (DA) sont perpendiculaires) donc 1 Montrer que deux droites sont perpendiculaires.



PRODUIT SCALAIRE DANS LESPACE

Les vecteurs et ne sont pas orthogonaux. II. Vecteur normal à un plan. 1) Définition et propriétés. Définition : Un vecteur non nul de l'espace est normal à 



VECTEURS ET REPÉRAGE

On appelle repère du plan tout triplet (O ?



produit scalaire Terminale generale

Deux droites de l'espace sont orthogonales si elles sont diri- gées par deux vecteurs orthogonaux. En guise d'explications. • Deux droites sont coplanaires si 



Cours de Calcul Tensoriel avec Exercices corrigés

Montrer que ces trois vecteurs sont linéairement indépendants. 2. Déterminer une base orthogonale de E3 en utilisant le procédé d'orthogona-.



4.6 Bases orthogonales et bases orthonormales de R

Définition 4.6.2. Un ensemble de vecteurs de Rn est dit orthogonal si deux vecteurs distincts quelconques de cet ensemble sont orthogonaux.

1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .

Exemple :

Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan P passant par le point et de vecteur normal . x MyP z AM n.0AMnÛ= 0 0 AAA AAA axxb yyc zz axbyc zaxby cz

Ûax+by+cz+d=0

d=-ax A -by A -cz A a¹0 x My z ax+by+cz+d=0 ;0;0 d A a ax+by+cz+d=0 AÎ a nb c x My z .000 d

AMna xby cz axbyc zd

a x My z .0AMn=n x-y+5z+1=0 1 1 5 n 1 2 1 A 3 3quotesdbs_dbs47.pdfusesText_47
[PDF] montrer que 3 points sont alignés complexe

[PDF] montrer que 3 points sont alignés géométrie dans l'espace

[PDF] montrer que 3 points sont alignés vecteurs

[PDF] montrer que 4 point sont cocycliques

[PDF] montrer que 4 points appartiennent ? un même cercle complexe

[PDF] montrer que 4 points sont coplanaires

[PDF] montrer que abcd est un losange

[PDF] Montrer que ce texte est engager (en espagnole)

[PDF] montrer que deux droites sont confondues

[PDF] montrer que deux droites sont perpendiculaires vecteurs

[PDF] montrer que deux droites sont sécantes dans un plan

[PDF] montrer que deux droites sont sécantes terminale s

[PDF] montrer que deux droites sont sécantes vecteurs

[PDF] Montrer que deux segments sont de même longueur

[PDF] montrer que deux systèmes agricoles s'opposent au brésil