[PDF] STATISTIQUES L'écart-type exprime la





Previous PDF Next PDF



I. Rappels II. Caractéristiques dune série statistique

La moyenne d'une série de valeurs est égale à la somme de toutes les valeurs de la série divisée par l'effectif total de la série. b) Exemple. Pierre



Séries Chronologiques

Une moyenne mobile en t étant une combinaison linéaire finie des valeurs de la série corres- pondant `a des dates entourant t elle réalise donc un lissage de 



Effectifs et fréquences Vocabulaire Définitions Caractéristiques de

Exemple : pour cette classe de 5e l'effectif de la valeur « football » est 8 et l'effectif total On calcule la moyenne de cette série en effectuant :.



STATISTIQUES

L'écart-type exprime la dispersion des valeurs d'une série statistique autour de sa moyenne. Plus il est grand plus les valeurs sont dispersées autour de 



IBM SPSS Forecasting 28

et la valeur 'brandX' comme dimension brand définissent une seule série manière explicite les ordres autorégressifs et de moyenne mobile ainsi que le ...



La série ci-dessus concerne les notes de 20 étudiants. On souhaite

À partir de cette série on calcule quelques valeurs et indices : • La moyenne des notes est 10



Lire ; Compter ; Tester avec R

Moyenne et. Médiane. 3. Dispersion N'existe pas. Quartile. Écart type et Il faut donc préciser `a R le type de valeur manquante qu'il va rencontrer dans.



statistiques corrigé

Pour chaque sous-groupe on calcule la moyenne et son effectif total. On obtient une nouvelle série dont les valeurs sont les moyennes des sous-groupes et les 



Statistiques : moyenne médiane et étendue

La médiane d'une série statistique est le nombre qui partage cette série en deux parties de même effectif. Attention !!! Les valeurs du caractère doivent 



STATISTIQUES

Moyenne pondérée: Pour calculer la moyenne pondérée d'une série de valeurs : * on additionne chaque valeur multipliée par son effectif ;.

1 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSTATISTIQUES La chapitre s'appuie sur la série du tableau ci-dessous qui présente le nombre de buts par match durant la Coupe du monde de football de 2010 : Nombre de buts 0 1 2 3 4 5 6 7 Nombre de matchs 7 17 13 14 8 6 0 1 Les valeurs du caractère étudié sont les "nombres de buts". Les effectifs correspondants sont les "nombres de matchs". I. Médiane et quartiles 1) L'étendue L'étendue est la différence entre la plus grande valeur et la plus petite valeur. Exemple : Pour la série étudiée dans le chapitre, l'étendue est égale à 7 - 0 = 7 buts. 2) Médiane Pour obtenir la médiane d'une série, on range les valeurs de la série dans l'ordre croissant. La médiane est la valeur qui partage la série en deux populations d'effectif égal. Méthode : Déterminer une médiane Vidéo https://youtu.be/g1OCTw--VYQ Pour la série étudiée dans le chapitre, calculer la médiane. L'effectif total est égal à 66. La médiane se trouve donc entre la 33e et 34e valeur de la série. On écrit les valeurs de la série dans l'ordre croissant : 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 ... # La 33e et la 34e valeur sont égales à 2. La médiane est donc également égale à 2.

2 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frOn en déduit que durant la Coupe du monde 2010, il y a eu autant de matchs dont le nombre de buts était supérieur à 2 que de matchs dont le nombre de buts était inférieur à 2. 3) Quartiles Le premier quartile Q1 est la plus petite valeur de la série telle qu'au moins 25% des valeurs sont inférieures ou égales à Q1. Le troisième quartile Q3 est la plus petite valeur de la série telle qu'au moins 75% des valeurs sont inférieures ou égales à Q3. Méthode : Déterminer les quartiles Vidéo https://youtu.be/IjsDK0ODwlw Pour la série étudiée dans le chapitre, calculer les quartiles. Pour la série étudiée dans le chapitre, l'effectif total est égal à 66. Le premier quartile Q1 est valeur 17e valeur. En effet,

1 4

×66=16,5→17

. Donc Q1 = 1. Le troisième quartile Q3 est valeur 50e valeur. En effet, 3 4

×66=49,5→50

. Donc Q3 = 3. 4) Ecart interquartile Définition : L'écart interquartile d'une série statistique de premier quartile Q1 et de troisième quartile Q3 est égal à la différence Q3 - Q1. Exemple : Pour la série étudiée dans le chapitre, l'écart interquartile est : Q3 - Q1 = 3 - 1 = 2. Remarque : L'écart interquartile d'une série mesure la dispersion autour de la médiane. Il contient au moins 50% des valeurs de la série. 5) Diagramme en boîte Vidéo https://youtu.be/la7c0Yf8VyM

3 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr Ce type diagramme porte également le nom de boîte à moustaches ou diagramme de Tukey. John Wilder Tukey (1915 - 2000) était un statisticien américain. Exemple : Pour la série étudiée dans le chapitre : II. Moyenne et écart-type 1) Moyenne Exemple : La moyenne de buts par match est égale à :

x=

7+17+13+14+8+6+1

154
66
≈2,3

2) Écart-type L'écart-type exprime la dispersion des valeurs d'une série statistique autour de sa moyenne. Plus il est grand, plus les valeurs sont dispersées autour de la moyenne et moins la moyenne représente de façon significative la série. L'écart-type possède la même unité que les valeurs de la série.

4 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr Méthode : Déterminer les caractéristiques statistiques à l'aide d'une calculatrice Vidéos n°6 à 13 de la Playlist : https://www.youtube.com/playlist?list=PLVUDmbpupCariueLJZJ78cq4tX1OVCHIJ 1) Déterminer la moyenne et l'écart-type de la série statistique étudiée dans ce chapitre. 2) Tracer le diagramme en boîte. 1) On saisit les données du tableau dans deux listes de la calculatrice : TI-83 : Touche " stats » puis " 1:Edit ...» Casio 35+ : Menu " STAT » On obtient : L1 L2 L3 L4 0 1 2 3 4 5 6 7 7 17 13 14 8 6 0 1 On indique que les valeurs du caractère sont stockées dans la liste 1 et les effectifs correspondants dans la liste 2 : TI-83 : Touche " stats » puis " CALC » et " Stats 1-Var ». Stats 1-Var L1,L2 Casio 35+ : " CALC » (F2) puis " SET » (F6) : 1Var XList :List1 1Var Freq :List2 Puis touches " EXIT » et " 1VAR » (F1). On obtient : Stats 1-Var

x

=2.3333333 Σx=154 Σx2=522 Sx=1.5819495 σx=1.5699193 n=66 On retrouve donc la moyenne x≈2,3

. L'écart-type, noté σ , est égal à : σ≈1,57 . L'écart-type est donc d'environ 1,57 but.

5 sur 5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2) Il est possible d'afficher également le diagramme en boîte : TI-83 : " 2nde » " graph stats » puis choisir " 1 : Graph1 ». Et touche " graphe ». Casio 35+ : " GRPH » (F1) puis " SET » (F6) : StatGraph1 Graph Type :MedBox XList :List1 Frequency :List2 Puis touche " EXIT » et " GPH1 ». On obtient : Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs10.pdfusesText_16
[PDF] moyenne d'âge calcul

[PDF] moyenne dune série statistique avec intervalles

[PDF] Moyenne de deux groupes

[PDF] Moyenne de notes

[PDF] Moyenne de notes / Statistique

[PDF] Moyenne de notes / Statistiue

[PDF] Moyenne de notes exercice 112 page 121

[PDF] moyenne de pourcentage excel

[PDF] moyenne de technologie

[PDF] Moyenne de vitesse

[PDF] moyenne définition

[PDF] Moyenne du 1er trimestre

[PDF] Moyenne Du troisieme trimestre

[PDF] moyenne en anglais

[PDF] moyenne en seconde générale