[PDF] Cours de probabilités et statistiques





Previous PDF Next PDF



PROBABILITÉS

L'espérance est donc la moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois. - La variance (respectivement l'écart-type) est la 



7 Lois de probabilité

calculer des probabilités sur la loi exponentielle Cela veut dire qu'en moyenne il y aura 340 ? 0.975 = 331. 5 passagers par vol. En.



Exercices Corrigés Statistique et Probabilités

Examen Statistique et Probabilités (1) . Calculer les valeurs de tendance centrale de la distribution : la moyenne le mode et les trois quartiles Q1



Cours de probabilités et statistiques

On suppose que le bruit est une suite de variables indépendantes de loi normale de moyenne nulle et de variance 1. Pour un signal la moyenne n'est pas nulle.



Statistique et probabilités

qN?k ? M(k) en notant que p + q = 1 le résultat pour la moyenne est trouvé. Statistique et probabilités – p. 12. Page 13. La variance pour la loi binomiale.



Probabilités continues

Même terminologie que pour des distributions discr`etes : dyssymétrie (skewness) moyenne



Probabilité de défaillance à la demande moyenne et tests longs par

2 ??? 2021 des composants étant donné le test mais elle est plus réaliste. Mots Clés — SIS



Cours de Statistiques inférentielles

La convergence en moyenne quadratique entraîne la convergence en probabilité. 2. Pour les (Xn) sont des variables aléatoires d'espérance et de variance 



Psy1004 – Section 3: Probabilités

vraisemblance la moyenne de la population." ? "En prenant une donnée au hasard



Introduction aux probabilités et à la statistique Jean Bérard

2.6.2 Espérance et moyenne loi empirique . La théorie des probabilités constitue un cadre mathématique pour la description.

Stage ATSM - Ao^ut 2010

Cours de probabilit

´es et statistiques

A. Perrut

contact : Anne.Perrut@univ-lyon1.fr 2

Table des matiµeres

1 Le modµele probabiliste 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Trois autres lois discrµetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Loi de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Loi d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 La loi normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 La loi exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Fonction d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Intervalles de con¯ance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3

4TABLE DES MATIµERES

5 Tests statistiques 47

5.1 Tests d'hypothµeses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Test d'ajustement du chi-deux . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B Tables statistiques 61

C.1 Variable quantitative discrµete . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C.2 Variable quantitative continue . . . . . . . . . . . . . . . . . . . . . . . . . . 68 C.3 Variable qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapitre 1

Le modµele probabiliste

1.1 Introduction

Exemples :

- l'enfant µa na^³tre sera une ¯lle, - Proportion :

P(A) =3

6 = 1=2. Alors

P(¯lle) = limn!+1k

n n mais cette limite a-t-elle un sens? - Opinion : pour que l'OL soit championne de France? Dans ce cas, on ne peut pas rejouer le m^eme subjectif. 5

6CHAPITRE 1. LE MODµELE PROBABILISTE

Exemples :

\Lyon ne gagne pas". chi®re pair", ieA=f2;4;6g. jcelui du second.

B: \on obtient pile au deuxiµeme lancer" est

B=f(f;p;f);(f;p;p);(p;p;f);(p;p;p)g

le nombre de \face" obtenus. Alors, =f0;1;2;3g. Le modµele est beaucoup plus simple, notations vocabulaire ensembliste vocabulaire probabiliste ensemble plein ensemble vide A sous-ensemble de !2A !appartient µaA

A½B

Ainclus dansB

AimpliqueB

A[B AouB A\B intersection deAetB AetB A cou A A\B=;

AetBdisjoints

AetBincompatibles

Exemple : soit =f0;1;2g. ConstruisonsP().

P() =n

;;f0g;f1g;f2g;f0;1g;f0;2g;f1;2g;o telle que : -P(A) =X -P() =X !2P(!) = 1

0.95 :Ava trµes probablement se produire.

4.0 : incorrect.

-2 : incorrect.

0.5 : une chance sur deux.

8CHAPITRE 1. LE MODµELE PROBABILISTE

faire quelques calculs :

1) SiAetBsont incompatibles,P(A[B) =P(A) +P(B).

2)P(Ac) = 1¡P(A).

3)P(;) = 0.

5)P(A[B) =P(A) +P(B)¡P(A\B).

2) CommeAetAcsont incompatibles,1 =P() =P(A[Ac) =P(A) +P(Ac).

3)P(;) = 1¡P(;c) = 1¡P() = 0.

P i2NA i´ =X i2NP(Ai) - axiome 3 :P() = 1

1 =P() =X

!2P(!) =X !2p=p£card()

D'oµup=P(!) =1

card()

P(A) =X

!2AP(!) =card(A) card() dire : - choisir, par

P(BjA) =P(A\B)

P(A) Utilisation 2 : QuandP(BjA)etP(A)sont faciles µa trouver, on peut obtenirP(A\B). Exemple 6Une urne contientrboules rouges etvboules vertes. On en tire deux, l'une =frouge;verteg £ frouge;verteg rouge".

P(A\B) =P(BjA)P(A) =r¡1

r+v¡1¢r r+v

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

10CHAPITRE 1. LE MODµELE PROBABILISTE

preuve : CommeA[Ac= ,P(B) =P(B\(A[Ac)) =P((B\A)[(B\Ac)). OrB\A

P(B) =P(B\A) +P(B\Ac)

On garde le m^eme formalisme.

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

r¡1 r+v¡1¢r r+v+r r+v¡1¢v r+v =r r+v (i)[i2IAi= (ii) lesAisont deux µa deux incompatibles : pour tousi6=j,Ai\Aj=;.

P(B) =X

i2IP(BjAi)P(Ai) dans l'ordre chronologique. Nous allons maintenant voir une formule µa remonter le temps...

1etP(B)>0. Alors,

P(AjB) =P(BjA)P(A)

P(BjA)P(A) +P(BjAc)P(Ac)

preuve :

P(AjB) =P(A\B)

P(B)=P(BjA)P(A)

P(B) i2I,

P(AijB) =P(BjAi)P(Ai)

P j2IP(BjAj)P(Aj) bleaux sur informatique. Les tableaux deAcomportent des fautes dans 5,2% des cas et ceux deBdans 6,7% des cas. On prend un tableau au hasard. Il comporte des fautes. T T

F=\ le tableau comporte des fautes".

P(TAjF) =P(FjTA)P(TA)

P(FjTA)P(TA) +P(FjTB)P(TB)

P(A\B) =P(A)P(B)

P(BjA) =P(B)()P(AjB) =P(A)()P(A\B) =P(A)P(B)

Proposition 14Soit =E£FoµuEest de cardinalnetFde cardinalp. Supposons que

P(!) =P((x;y)) =1

card() =1 np =PE(fxg)PF(fyg) =fP;Fg £ f1;:::;6g

12CHAPITRE 1. LE MODµELE PROBABILISTE

8!2; P(!) =1

card() = 1=12 P N³ (!1;:::;!N)´ =P(!1)¢¢¢P(!N) surN. Pourtant, le nombre de combinaisons dont la somme fait 12 est le m^eme que le nombre de combinaisons dont la somme fait 11. Alors?

1.6 Exercices

3) On tire trois cartes dans un jeu .

suppose que

P(A[B) = 7=8; P(A\B) = 1=4; P(A) = 3=8:

CalculerP(B),P(A\Bc),P(B\Ac).

ros impairs ont chacun la m^eme chance d'appara^³tre, chance qui est deux fois plus grande hasard, et l'on observe que les quatre places libres se suivent. Est-ce surprenant?

1.6. EXERCICES13

Exercice 6 {SoientM1,M2,M3trois personnes. La premiµereM1dispose d'une infor- la transmet µaM3. Malheureusement, µa chaque fois que l'information est transmise, il y a le bon message? Et siM3transmet l'information dont il dispose µa une quatriµeme personneM4, quelle est elle re»coit un vaccin? daire? Exercice 8 |Dans une usine, la machine A fabrique 60% des piµeces, dont 2% sont C? Exercice 9 |Dans une jardinerie : 25% des plantes ont moins d'un an, 60% ont de 1 µa 2 ans, 25% ont des °eurs jaunes, 60% ont des °eurs roses, 15% ont des °eurs jaunes et moins d'un an, 3% ont plus de 2 ans et n'ont ni °eurs jaunes, ni °eurs roses. 15% de celles qui ont de 1 µa 2 ans, ont des °eurs jaunes, 15% de celles qui ont de 1 µa 2 ans, n'ont ni

°eurs jaunes ni °eurs roses. On suppose que les °eurs ne peuvent pas ^etre µa la fois jaunes

et roses. On choisit une plante au hasard dans cette jardinerie.

14CHAPITRE 1. LE MODµELE PROBABILISTE

Exercice 10 |Deux chau®eurs de bus se relaient sur la m^eme ligne. Lors d'une grµeve, le premier a60%de chances de faire grµeve et le second80%. Pendant la prochaine grµeve, Exercice 11 |Une loterie comporte 500 billets dont deux seulement sont gagnants.

Chapitre 2

PPP PPF PFP FPP FFP FPF PFF FFF

valeur deX

3 2 2 2 1 1 1 0

k(valeur prise parX)

3 2 1 0

fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg k(X=k) = 15 elle est ditecontinue(exemples : hauteur d'un arbre, distance de freinage d'une voiture souvent une formule, plut^ot qu'une liste. [X= 3] [X= 2] [X= 1] [X= 0] fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg

1/8 3/8 3/8 1/8

F(x) =P[X·x]

Exemple :Xest le nombre de Face quand on lance trois fois une piµece. On a vu que la loi deXest P[X= 0] = 1=8; P[X= 1] =P[X= 2] = 3=8; P[X= 3] = 1=8

D'oµu,

F(x) =8

>>>>>:0six <0;

1=8si0·x <1;

4=8si1·x <2;

7=8si2·x <3;

1six¸3

1)Fest croissante,

3) lim x! ¡1F(x) = 0;limx!+1F(x) = 1

E[X] =X

kkP[X=k] oµu on somme sur toutes les valeurskque peut prendreX.

E[g(X)] =X

kg(k)P[X=k] preuve : observons queg(X) =yssiX=xavecg(x) =y. Ainsi,

P(g(X) =y) =X

x:g(x)=yP(X=x)

E(Y) =X

yyP(Y=y) =X yX x:g(x)=yg(x)P(X=x) =X xg(x)P(X=x)

Var(X) =Eh

(X¡E[X])2i =X k(k¡E[X])2P[X=k] =E[X2]¡E[X]2 k2X()jkjP(X=k)<1 sa valeur moyenneE[X]. Exemple 18: nous avons la loi du nombreXde PILE quand on lance trois fois une piµece.

E[X] =3X

k=0kP[X=k] = 3¢1 8 + 2¢3 8 + 1¢3 8 + 0¢1 8 =12 8 =3 2

Var(X) =E[X2]¡E[X]2=3X

k=0k

2P[X=k]¡E[X]2

= 3

2¢1

8 + 22¢3 8 + 12¢3 8 + 02¢1 8

¡µ3

2 2 3 4 nbr de PILE [X= 3] [X= 2] [X= 1] [X= 0]

0.125 0.375 0.375 0.125

0.2 0.6 0.1 0.1

partir de quelques observations.

P[X=i;Y=j] =P[X=i]P[Y=j]

P[(X;Y) = (i;j)] =P[X=i;Y=j].

touti2X(),

P[X=i] =X

j2Y()P[X=ijY=j]P[Y=j]

SoitZ=X+Y. Quelle est la loi deZ?

valeur que prendX, la valeur que prendYet la valeur deZ. XnY

1 2 3 4 5 6

1

2 3 4 5 6 7

2

3 4 5 6 7 8

3

4 5 6 7 8 9

4

5 6 7 8 9 10

5

6 7 8 9 10 11

6

7 8 9 10 11 12

pour tous1·i;j·6; P[X=i;Y=j] =P[X=i]P[Y=j] = 1=36

2] =P[Z= 12] = 1=36,P[Z= 3] =P[Z= 11] = 2=36,P[Z= 4] =P[Z= 10] = 3=36,

1·j·12.

P[Z=j] =6X

i=1P[Z=jjX=i]P[X=i] 1quotesdbs_dbs47.pdfusesText_47
[PDF] moyenne, quartiles ect

[PDF] Moyenne, variance et ecart-type

[PDF] moyenne/médiane/étendue

[PDF] Moyennes

[PDF] Moyennes arithmétiques

[PDF] Moyennes et fonctions

[PDF] Moyennes et pourcentages

[PDF] Moyennes Mathématiques

[PDF] Moyennes Pour statistique

[PDF] moyens de production d'électricité

[PDF] moyens de protection du sol

[PDF] Moyens de transport et émissions de C02

[PDF] Moyens mémo-technique

[PDF] Moyens permettant ? un robot de contourner des obstacles

[PDF] moyens plastiques pour montrer le mouvement sur image fixe