[PDF] Cours de mathématiques - Exo7





Previous PDF Next PDF



Cours de mathématiques - Exo7

Racines carrées équation du second degré. 2.1. Racines carrées d'un nombre complexe. Pour z ? C



La résolution de problèmes mathématiques au collège

de la classe – la verbalisation dans un premier temps le débat mathématique de mathématiques du second degré]



Exercices de mathématiques

Exercices de mathématiques. Classes de terminale S ES



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

la solution sont très particulières : par exemple les équations du premier degré ax + b = 0



Vitesse et distance darrêt - Mathématiques 3e

Partie 2. Distance de freinage (50 mn). Objectif Maths. Manipuler une fonction du second degré (calculs de valeurs représentation graphique.



Sur une forme générale des équations de la dynamique

Mémorial des sciences mathématiques fascicule 1 (1925) l'on veut s'en tenir au premier ordre de dérivation



Cours de mathématiques - Exo7

la solution sont très particulières : par exemple les équations du premier degré ax + b = 0



La résolution de problèmes mathématiques au cours moyen

Le produit cartésien de deux ensembles est l'ensemble de tous les couples dont la première composante appartient au premier ensemble et la seconde au second.



Plan national de formation 2021-2022

IA-IPR IEN premier degré



SCIENCES DE LINGENIEUR

Alors dans l'absence presque sûre d'un manuel pour nos élèves de la 1ere STE Pour un signal périodique u(t) c'est le nombre de périodes par seconde.

Cours de mathématiques

Première annéeExo7

2

SommaireExo7

1Logique et raisonnements. ........................................9

1

L ogique

9 2

R aisonnements

14

2Ensembles et applications. ......................................19

1

Ensembles

20 2

Applications

23
3

Injection, surjection, bijection

25
4

Ensembles finis

29
5

R elationd"équivalence

36

3Nombres complexes. ............................................41

1

L esnombres comple xes

41
2 R acinescar rées,équation du second degr é 45
3

Ar gumentet trigonométrie

48
4

Nombres comple xeset géométrie

52

4Arithmétique. ...................................................55

1

Division euclidienne et pgcd

55
2

Théor èmede Bézout

59
3

Nombres premiers

63
4

Congruences

66

5Polynômes. ......................................................73

1

Définitions

73
2

Arithmétique des polynômes

76
3

R acined"un polynôme, factorisation

80
4

F ractionsrationnelles

85

6Groupes. ........................................................89

1

Gr oupe

89
2

Sous-gr oupes

94
3

Morphismes de gr oupes

96
4

L egr oupeZ/nZ.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5

L egr oupedes per mutationsSn.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7Les nombres réels. .............................................107

1

L "ensembledes nombres rationnels Q.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2

P ropriétésde R.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3

Densité de QdansR.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4

Bor nesupérieure

116 3

4SOMMAIRE

8Les suites. ......................................................121

1

Définitions

121
2

Limites

124
3

Ex emplesremar quables

130
4

Théor èmede conver gence

135
5

Suites r écurrentes

140

9Limites et fonctions continues. .................................147

1

Notions de fonction

148
2

Limites

152
3

Continuité en un point

158
4

Continuité sur un inter valle

163
5

F onctionsmonotones et bijections

166

10Fonctions usuelles. .............................................173

1

L ogarithmeet e xponentielle

173
2

F onctionscirculaires inverses

177
3

F onctionshyperboliques et hyperboliques inverses

180

11Dérivée d"une fonction. .........................................185

1

Dérivée

186
2

Calcul des dérivées

189
3

Extremum local, théor èmede R olle

193
4

Théor èmedes accr oissementsfinis

197

12Zéros des fonctions. ............................................203

1

La dichotomie

203
2

La méthode de la sécante

208
3

La méthode de Newton

212

13Intégrales. .....................................................217

1

L "intégralede Riemann

219
2

P ropriétésde l"intégrale

225
3

P rimitived"une fonction

228
4 Intégration par par ties- Changement de variable 234
5

Intégration des fractions rationnelles

238

14Développements limités. .......................................243

1

F ormulesde T aylor

244
2 Développements limités au voisinage d"un point 250
3 Opérations sur les développements limités 253
4

Applications des développements limités

257

15Courbes paramétrées. ..........................................263

1

Notions de base

264
2

T angenteà une courbe paramétr ée

271
3

P ointssinguliers - Branches infinies

277
4

Plan d"étude d"une courbe paramétr ée

284
5

Courbes en polaires : théorie

291
6

Courbes en polaires : e xemples

298

SOMMAIRE5

16Systèmes linéaires. .............................................303

1 Intr oductionaux systèmes d"équations linéaires 303
2

Théorie des systèmes linéaires

307
3

R ésolutionpar la méthode du pivot de Gauss

310

17L"espace vectorielRn............................................317

1

V ecteursde Rn.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

2

Ex emplesd"applications linéaires

320
3

P ropriétésdes applications linéaires

326

18Matrices. .......................................................333

1

Définition

333
2

Multiplication de matrices

336
3

Inverse d"une matrice : définition

341
4

Inverse d"une matrice : calcul

343
5 Inverse d"une matrice : systèmes linéaires et matrices élémentaires 346
6 Matrices triangulaires, transposition, trace, matrices symétriques 353

19Espaces vectoriels. .............................................361

1

Espace vectoriel (début)

361
2

Espace vectoriel (fin)

365
3

Sous-espace vectoriel (début)

369
4

Sous-espace vectoriel (milieu)

373
5

Sous-espace vectoriel (fin)

376
6

Application linéaire (début)

383
7

Application linéaire (milieu)

385
8

Application linéaire (fin)

388

20Dimension finie. ................................................395

1

F amillelibre

395
2

F amillegénératrice

400
3 Base 402
4

Dimension d"un espace vectoriel

408
5

Dimension des sous-espaces vectoriels

413

21Matrices et applications linéaires. ...............................419

1

R angd"une famille de vecteurs

419
2

Applications linéaires en dimension finie

425
3

Matrice d"une application linéaire

432
4

Changement de bases

438

22Déterminants. ..................................................447

1

Déter minanten dimension 2et3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

2

Définition du déter minant

451
3

P ropriétésdu déter minant

457
4

Calculs de déter minants

462
5

Applications des déter minants

466

6SOMMAIRE

Cours et exercices de maths

Logique &

Raisonnements

Ensembles &

Applications

Arithmétique

Nombres

complexesPolynômesEspaces vectoriels

Groupes

Systèmes

linéaires

Dimension finie

Matrices

Applications

linéaires

Déterminants

Droites et plans

Courbes pa-

ramétrés

Géométrie affine

et euclidienne

Nombres réels

Suites I

Fonctions

continues

Zéros de

fonctions

Dérivées

Trigonométrie

Fonctions

usuellesDéveloppements limités

Intégrales I

Intégrales II

Suites II

Équations

différentiellesLicence Creative Commons - BY-NC-SA - 3.0 FR

8SOMMAIRE

1 Logique et raisonnementsExo7

Quelques motivations

-Il est important d"avoir unlangage rigoureux. La langue française est souvent ambigüe. Prenons l"exemple de la conjonction "ou»; au restaurant "fromage ou dessert» signifie l"un ou l"autre mais pas les deux. Par contre si dans un jeu de carte on cherche "les as ou les

coeurs» alors il ne faut pas exclure l"as de coeur. Autre exemple : que répondre à la question

"As-tu10euros en poche?» si l"on dispose de 15 euros?

Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d"une fonction

est souvent expliquée par "on trace le graphe sans lever le crayon». Il est clair que c"est une

définition peu satisfaisante. Voici la définition mathématique de la continuité d"une fonction

f:I!Ren un pointx02I:

8"È09±È08x2I(jx¡x0jDZAE) jf(x)¡f(x0)jÇ").

C"est le but de ce chapitre de rendre cette ligne plus claire! C"est lalogique. Enfin les mathématiques tentent dedistinguer le vrai du faux. Parexemple "Est-ce qu"une augmentation de20%, puis de30%est plus intéressante qu"une augmentation de50%?». Vous

pouvez penser "oui» ou "non», mais pour en être sûr il faut suivre une démarche logique

qui mène à la conclusion. Cette démarche doit être convaincante pour vous mais aussi pour

les autres. On parle deraisonnement. Les mathématiques sont un langage pour s"exprimer rigoureusement, adapté aux phénomènes complexes, qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider - ou d"infirmer - une hypothèse et de l"expliquer à autrui. 1.

Logique

1.1.

Asser tions

Uneassertionest une phrase soit vraie, soit fausse, pas les deux en même temps.

Exemples :

-"Il pleut.» -"Je suis plus grand que toi.» -" 2Å2AE4 »

10Logique et raisonnements

-" 2£3AE7 » -"Pour toutx2R, on ax2Ê0.»

-"Pour toutz2C, on ajzjAE1.»SiPest une assertion etQest une autre assertion, nous allons définir de nouvelles assertions

construites à partir dePet deQ.

L"opérateur logique "et»

L"assertion "PetQ» est vraie siPest vraie etQest vraie. L"assertion "PetQ» est fausse sinon.

On résume ceci en unetable de vérité:

P\QVF VVF FFF

FIGURE1.1 - Table de vérité de "PetQ»

Par exemple siPest l"assertion "Cette carte est un as» etQl"assertion "Cette carte est coeur» alors

l"assertion "PetQ» est vraie si la carte est l"as de coeur et est fausse pour toute autre carte.

L"opérateur logique "ou»

L"assertion "PouQ» est vraie si l"une des deux assertionsPouQest vraie. L"assertion "PouQ» est fausse si les deux assertionsPetQsont fausses.

On reprend ceci dans la table de vérité :

P\QVF VVV FVF

FIGURE1.2 - Table de vérité de "PouQ»

SiPest l"assertion "Cette carte est un as» etQl"assertion "Cette carte est coeur» alors l"assertion

"PouQ» est vraie si la carte est un as ou bien un coeur (en particulier elle est vraie pour l"as de

coeur).Remarque

Pour définir les opérateurs "ou», "et» on fait appel à une phrase en français utilisant les

motsou,et! Les tables de vérités permettent d"éviter ce problème.La négation "non» L"assertion "nonP» est vraie siPest fausse, et fausse siPest vraie. PVF nonPFV

FIGURE1.3 - Table de vérité de "nonP»

Logique et raisonnements11

L"implicationAE)

La définition mathématique est la suivante : L"assertion "(nonP) ouQ» est notée "PAE)Q».Sa table de vérité est donc la suivante : P\QVF VVF FVV

FIGURE1.4 - Table de vérité de "PAE)Q»

L"assertion "PAE)Q» se lit en français "PimpliqueQ». Elle se lit souvent aussi "siPest vraie alorsQest vraie» ou "siPalorsQ».

Par exemple :

-" 0ÉxÉ25AE)pxÉ5 » est vraie (prendre la racine carrée). -"x2]¡1,¡4[AE)x2Å3x¡4È0 » est vraie (étudier le binôme). -" sin(µ)AE0AE)µAE0 » est fausse (regarder pourµAE2¼par exemple).quotesdbs_dbs42.pdfusesText_42
[PDF] ? bientôt en latin PDF Cours,Exercices ,Examens

[PDF] ? Carita 1ère Mathématiques

[PDF] ? celle qui est trop gaie (Les Fleurs du mal , Baudelaire) Terminale Français

[PDF] ? combien x est il est égale 5ème Mathématiques

[PDF] ? completer 6ème Mathématiques

[PDF] ? demain en latin PDF Cours,Exercices ,Examens

[PDF] ? est le produit de la différence de 12 et de 7 par 6 PDF Cours,Exercices ,Examens

[PDF] ? fermer svp 1ère Management

[PDF] ? l'aide s'il vous plait !! 2nde Géographie

[PDF] ? laide vieuxprof urgent svp 2nde Mathématiques

[PDF] ? l'attention d'olyon et de mathieu29 Bac +5 Autre

[PDF] ? l'attention de lili57 5ème Allemand

[PDF] ? l'attention de mino 6ème Autre

[PDF] ? l'ouest rien de nouveau - HDA 3ème Autre

[PDF] ? l'âge adulte marie la fille du condamné écrit une lettre PDF Cours,Exercices ,Examens