[PDF] Cours darithmétique parant les olympiades internationales de





Previous PDF Next PDF



Sujet et Corrigé Olympiades Nationales de Maths 2019

13‏/03‏/2019 OLYMPIADES DE MATHÉMATIQUES. EXERCICES NATIONAUX. Classes de première S • 2019 freemaths . fr. Olympiades Mathématiques



Les olympiades internationales

des Olympiades Internationales de Mathématiques puis nous détaillerons le mode de Site officiel des Olympiades Internationales (anciens sujets et scores des.



OLYMPIADES 1996 37 èmeOympiade Internationale de

nt officieux des pays. Certes les sujets étaient piuS ardus que l'an passé (cl'. enseignement des Mathématiques dans nos lycées»



Sujet pour Olympiades de Mathématiques Sujet pour Olympiades de Mathématiques

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES. SUJET N° 2. Durée : 4 heures. L'emploi de la calculatrice est autorisé. Les quatre exercices sont indépendants 



Olympiades Nationales de Maths 2020 : Sujet + Corrigé Olympiades Nationales de Maths 2020 : Sujet + Corrigé

Les candidats de voie générale ayant suivi l'enseignement de spécialité de mathématiques doivent traiter les exercices nationaux 1 et 2. Les autres candidats 



Olympiades de mathématiques Olympiades de mathématiques

Un sujet pour collégiens un pour lycéens (deux exercices communs). 269. Page 4. Panoramath 7. — Olympiade Internationale de Mathématique. Deux épreuves de 4 



OLYMPIADES INTERNATIONALES MATHÉMATIQUES

Olympiades Internationales Mathématiques. 75. HISTORIQUE. Chaque année une des sujets pour lycéens



Olympiades de Mathématiques Nationales 2018

OLYMPIADES DE MATHÉMATIQUES. EXERCICES NATIONAUX. Classes de première S • 2018 Olympiades Mathématiques



Stage olympique de Grésillon août 2007

de l'équipe qui représentera la France à l'Olympiade internationale de mathématiques déchantent rapidement après s'être plongé quelques minutes dans le sujet.



OLYMPIADES ACADÉMIQUES MATHÉMATIQUES

Olympiade Internationale 2002 énoncé 2 …………………135. Sommaire. 4. Olympiades académiques de première - 2002. Page 5. LE BONHEUR EST DANS L'OLYMPE ! Henri BAREIL.



Sujet et Corrigé Olympiades Nationales de Maths 2019

Sujet et Corrigé vous sont présentés par freemaths.fr . . . Page 2. OLYMPIADES DE MATHÉMATIQUES. EXERCICES NATIONAUX. Classes de première S 



Les olympiades internationales

des Olympiades Internationales de Mathématiques puis nous détaillerons le mode de qui préparent les sujets



Olympiades de mathématiques

Un sujet pour collégiens un pour lycéens (deux exercices communs). 269. Page 4. Panoramath 7. — Olympiade Internationale de Mathématique. Deux 



OLYMPIADES ACADÉMIQUES MATHÉMATIQUES

si l'on compare les sujets des deux olympiades en particulier pour les Internationales de Mathématiques



Les Olympiades suisses de mathématiques

Les Olympiades internationales de mathématiques (OIM) sont une compétition Durant ces journées les différents sujets examinés sont présentés pour.



27e Olympiade Internationale de Chimie Beijing - Chine Rapport d

Olympiade Internationale de Chimie s'est déroulée cette année en Chine à Pékin



Cours darithmétique

parant les olympiades internationales de mathématiques. Il n'y a pas beaucoup de théorie `a faire sur le sujet le point délicat est de trouver un.



OLYMPIADES INTERNATIONALES MATHÉMATIQUES

Au sein de l'association Animath l'Olympiade Française de Mathématiques (OFM) centaine d'élèves sont sélectionnés (les sujets pour les collégiens ...



OLYMPIADES 1996 37 èmeOympiade Internationale de

Internationale de Mathématiques Certes les sujets étaient piuS ardus que l'an passé (cl'. ... enseignement des Mathématiques dans nos lycées»



COMMUNIQUÉ

Jun 20 2017 Ceci avait été le sujet d'une conjecture de Katz and ... de l'équipe canadienne participant à l'Olympiade internationale de mathématiques.

Cours d"arithm´etique

Premi`ere partie

PierreBornsztein

XavierCaruso

PierreNolin

MehdiTibouchi

D´ecembre 2004

Ce document est la premi`ere partie d"un cours d"arithm´etique ´ecrit pour les ´el`eves pr´e-

parant les olympiades internationales de math´ematiques. Le plan complet de ce cours est :

1. Premiers concepts

2. Division euclidienne et cons´equences

3. Congruences

4.´Equations diophantiennes

5. Structure deZ/nZ

6. Sommes de carr´es

7. Polynˆomes `a coefficients entiers

8. Fractions continues

Cette premi`ere partie traite les quatre premiers chapitres. Les quatre derniers chapitres forment quant `a eux la deuxi`eme partie de ce cours. Contrairement `a la seconde partie, cette premi`ere partie se veut le plus ´el´ementaire

possible. Les notions abstraites, souvent plus difficiles `a assimiler, mais qui clarifient les id´ees

lorsqu"elles sont comprises, ne sont ´evoqu´ees que dans la seconde partie. Nous conseillons au lecteur de bien maˆıtriser ce premier tome avant de passer `a la lecture du second.

Les notions et les th´eor`emes introduits ici sont g´en´eralement tout `a fait suffisants pour

traiter les exercices propos´ees aux olympiades internationales de math´ematiques.

Vous trouverez `a la fin de chaque chapitre une s´erie d"exercices de difficult´e variable mais

indiqu´ee par des ´etoiles

1. Toutes les solutions sont rassembl´ees `a la fin du document.

Nous vous souhaitons bon apprentissage et bonne lecture. 1 Plus nous avons jug´e l"exercice difficile, plus le nombre d"´etoiles est important. 1

Liste des abbr´evations :

AMM American Mathematical Monthly

APMO The Asian Pacific Mathematics Olympiad

CG Concours g´en´eral

OIM Olympiades Internationales de Math´ematiques

SL Short List

TDV Tournoi Des Villes

Liste des notations :

?ensemble vide

Nensemble des entiers naturels (positifs ou nuls)

N ?ensemble des entiers naturels strictement positifs

Zensemble des entiers relatifs

Qensemble des nombres rationnels

Rensemble des nombres r´eelsPsymbˆole de sommation2Qsymbˆole de produit3 a|b adiviseb [x]partie enti`ere dex {x}partie d´ecimale dex pgcdplus grand commun diviseur a?bpgcd(a,b) ppcmplus petit commun multiple a?bppcm(a,b) a≡b(modN)aest congru `abmoduloN pun nombre premier v p(n)valuationp-adique den d(n)nombre de diviseurs positifs den

σ(n)somme des diviseurs positifs den

?fonction indicatrice d"Euler s b(n)somme des chiffres denen baseb π(n)nombre de nombres premiers inf´erieurs ou ´egaux `an a n...a0b´ecriture en baseb n!factorielle den:n! = 1×2× ··· ×n C k ncoefficient binomial : Ck n=n! k!(n-k)! u n≂vnles suites(un)et(vn)sont ´equivalentes 2 Une somme index´ee par l"ensemble vide est ´egale `a0.

3Un produit index´e par l"ensemble vide est ´egale `a1.

2

Table des mati`eres

1 Premiers concepts 4

1.1 Divisibilit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Nombres premiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Valuationp-adique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Quelques fonctions arithm´etiques . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Nombres rationnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Division euclidienne et cons´equences 24

2.1 Division euclidienne et d´ecomposition en baseb. . . . . . . . . . . . . . . . 24

2.2 Algorithme d"Euclide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Algorithme d"Euclide ´etendu et th´eor`eme de B´ezout . . . . . . . . . . . . . . 28

2.4 Lemme de Gauss et cons´equences . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Congruences 37

3.1 D´efinition, premi`eres propri´et´es . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Crit`eres de divisibilit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Ordre d"un ´el´ement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Th´eor`eme chinois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Congruences modulop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Congruences modulopn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Coefficients binomiaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4

´Equations diophantiennes 56

4.1 Quelques r´eflexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Utilisation des congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Descente infinie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4´Equations de degr´e2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5´Equations de degr´e3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Corrig´e des exercices 75

5.1 Exercices de"Premiers concepts». . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Exercices de"Division euclidienne et cons´equences». . . . . . . . . . . . . 103

5.3 Exercices de"Congruences». . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Exercices de"´Equations diophantiennes». . . . . . . . . . . . . . . . . . . 143

3

1 Premiers concepts

Cette section, comme son nom l"indique, pr´esente le concept de base de l"arithm´etique,

`a savoir la divisibilit´e. On introduit ensuite les nombres premiers ce qui permet d"´enoncer le

th´eor`eme fondamental de l"arithm´etique (c"est-`a-dire la d´ecomposition en facteurs premiers)

dans lequel les nombres premiers jouent le rˆole de briques ´el´ementaires pour la fabrication

des nombres.

1.1 Divisibilit´e

D´efinition 1.1.1Siaetbsont deux entiers, on dit queadiviseb, ou quebestdivisible para, s"il existe un entierqtel queb=aq. On dit encore queaest undiviseurdeb, ou que best unmultipledea. On le notea|b.

Propri´et´es

+Siaetbsont deux entiers avecb?= 0,bdiviseasi et seulement si la fractiona b est un entier. +Tous les entiers divisent0, et sont divisibles par1. +Un entiernest toujours divisible par1,-1,net-n. +Sia|b, etb|c, alorsa|c. +Sia|b1,b2,...,bn, alorsa|b1c1+b2c2+...+bncn, quels que soient les entiersc1,c2,...,cn. +Siadivisebetb?= 0, alors|a|6|b|. +Siadivisebetbdivisea, alorsa=±b. +Siaetbsont deux entiers tels quean|bnpour un entiern>1, alorsa|b.

Toutes les propri´et´es list´ees pr´ec´edemment sont imm´ediates, `a l"exception de la derni`ere dont

la d´emonstration n"est pas triviale sans bagage arithm´etique. Une preuve possible consiste

`a utiliser la caract´erisation de la divisibilit´e par les valuationsp-adiques (voir paragraphe

1.3). Voyons imm´ediatement deux exercices qui montrent comment on peut manipuler la no- tion de divisibilit´e :

Exercice

: Soientxetydes entiers. Montrer que2x+ 3yest divisible par7si et seulement si5x+ 4yl"est.

Solution

: Supposons que7divise2x+3y, alors il divise6(2x+ 3y)-7(x+ 2y) = 5x+4y. R´eciproquement si7divise5x+ 4y, il divise6(5x+ 4y)-7(4x+ 3y) = 2x+ 3y.⎷

Exercice

: Pour quels entiersnstrictement positifs, le nombren2+ 1divise-t-iln+ 1?

Solution

: Sin2+1divisen+1, comme tout est positif, on doit avoirn2+16n+1, ce qui n"est v´erifi´e que pourn= 1. On v´erifie ensuite quen= 1est bien solution.⎷ 4

Parties enti`eres

D´efinition 1.1.2Sixest un r´eel, on appellepartie enti`eredex, et on note[x], le plus grand entier inf´erieur ou ´egal `ax. Ainsi, on a[x]6x <[x] + 1. Remarque.On d´efinit aussi lapartie d´ecimaledex, comme la diff´erencex-[x]. La partie

d´ecimale dexest souvent not´ee{x}. Cette notion est moins utilis´ee que la notion de partie

enti`ere et les conventions de notations sont moins usuelles `a ce propos : lors d"un exercice,

ou d"un expos´e, il est toujours de bon goˆut de commencer par pr´eciser les notations qui vont

ˆetre employ´ees par la suite.

Notons qu"il fautˆetre prudent avec les nombres n´egatifs : autant pour les nombres positifs, la partie enti`ere correspond au nombre auquel on retire ses chiffres apr`es la virgule, autant

ce n"est pas le cas pour les nombres n´egatifs. En effet, si on suit la d´efinition, on voit par

exemple que[-3,5] =-4.

Les parties enti`eres et parties d´ecimales ob´eissent `a quelques propri´et´es ´el´ementaires que

nous listons ci-dessous :

Propri´et´es ´el´ementaires

+On a toujoursx= [x] +{x}. +Pour tout r´eelx, on ax-1<[x]6x +Sixest entier,[x] =xet{x}= 0. Et r´eciproquement si l"une des deux ´egalit´es est v´erifi´ee, alorsxest entier. +[-x] =-[x]-1sauf sixest entier, auquel cas[-x] =-[x]. +Sixetysont deux r´eels,[x] + [y]6[x+y]6[x] + [y] + 1. +Sim >0est un entier, alors il y a exactement[x m ]multiples demcompris entre1et x.

La d´emonstration des propri´et´es consiste en de simples manipulations de la d´efinition et

principalement de l"in´egalit´e[x]6x <[x] + 1. Elle est laiss´ee au lecteur. On remarquera que tr`es souvent les questions faisant intervenir des parties enti`eres se r´esument `a de la manipulation d"in´egalit´es comme le montre par exemple l"exercice suivant :

Exercice

: On suppose que4n+ 2n"est pas le carr´e d"un nombre entier. Montrer que pour n>0, on a :h⎷ n+⎷ n+ 1i =h⎷

4n+ 2i

Solution

: Remarquons tout d"abord que l"on a toujours l"in´egalit´e : n+⎷ n+ 1<⎷ 4n+ 2 En effet, en ´elevant au carr´e, on a `a comparer2n+ 1 + 2⎷ n

2+net4n+ 2, soit2⎷

n 2+n

et2n+ 1et l"in´egalit´e devient ´evidente apr`es une nouvelle ´el´evation au carr´e.

Il reste `a prouver qu"il n"existe aucun entierktel que : n+⎷ n+ 1< k6⎷ 4n+ 2 5 soit, encore en ´elevant au carr´e qu"il n"existe aucun entierktel que :

2n+ 1 + 2⎷

n

2+n < k264n+ 2

Mais il est clair que4n+ 1<2n+ 1 + 2⎷

n

2+net un tel entierkv´erifiraita fortiori

4n+ 1< k264n+ 2. Commekest entier, il vient forc´ementk2= 4n+ 2, mais cela n"est

pas possible puisque l"on a suppos´e que4n+ 2n"´etait pas le carr´e d"un entier.⎷ Remarque.En fait,4n+ 2n"est jamais le carr´e d"un entier. En effet, le nombre4n+ 2est

pair, et s"il ´etait le carr´e d"un entier, il serait le carr´e d"un entier pair. Mais alors4n+ 2

devrait ˆetre un multiple de4, ce qui n"est, `a l"´evidence, pas le cas. L"´egalit´e pr´ec´edente de

parties enti`eres est donc valable pour tout entiern>1, sans hypoth`ese suppl´ementaire. Une propri´et´e amusante des parties enti`eres qui montre ´egalement que parfois (souvent)

les manipulations d"in´egalit´es ne sont pas faciles est le th´eor`eme de Beatty que voici :

Th´eor`eme 1.1.3 (Beatty)Soientαetβdeux r´eels strictements positifs. On noteSα

(resp.Sβ) l"ensemble des entiers strictement positifs qui s"´ecrivent sous la forme[nα](resp.

[nβ]) pour un certain entiern. Les ensemblesSαetSβforment une partition deN?si, et seulement siαetβsont irrationnels et v´erifient 1 +1 = 1. D´emonstration.Commen¸cons par supposer queαetβsont des irrationnels v´erifiant1 1 = 1. Soitkun entier strictement positif. Il est dans l"ensembleSαsi et seulement s"il existe un entierntel que : nα-1< k < nα

l"in´egalit´e de droite ´etant stricte carαest suppos´e irrationnel. L"´equation se transforme et

donne :k ff

¡ n ¡k

ff +1 ff ,k ff +1

£contient un entier. De mˆeme

k?Sβsi et seulement si l"intervallei k fi ,k fi +1 h contient un entier. ff ,k ff + 1£est de longueur1et ses bornes sont irrationnelles, donc il contient un et un seul entiern. Sin ¡ k+ 1-n fi +1

et donck?Sβ. Sik´etait `a la fois ´el´ement deSαet deSβ, il y aurait un entier dans

ff ,k ff +1

£et un dans l"intervallei

k fi ,k fi +1 h et donc par le mˆeme raisonnement ff ,k ffquotesdbs_dbs47.pdfusesText_47
[PDF] olympiade math maroc 3eme annee college

[PDF] olympiades internationales de mathématiques pdf

[PDF] olympiades mathématiques corrigés maroc

[PDF] olympiades maths college

[PDF] olympiades maths maroc 2016

[PDF] olympiades maths maroc pdf

[PDF] Ombre d'un cube - Mathématiques

[PDF] Ombre d'une balle sur un mur

[PDF] ombre d'un doute youtube

[PDF] Ombre et lumière " Jouons avec les ombres "

[PDF] ombre et lumière arts plastiques cycle 3

[PDF] ombre et lumière cheveux

[PDF] ombre et lumière citation

[PDF] ombre et lumière coiffure

[PDF] ombre et lumière dessin