[PDF] Thermodynamique VI. Machines thermiques. ? Définitions.





Previous PDF Next PDF



Chapitre 22 Machines thermiques

3.1 Moteur ditherme idéal : la machine de Carnot. Le cycle ditherme théorique réversible



Cours 9 : Machines thermiques

Proposition de Carnot (le cycle de Carnot). Entropie du moteur : SM = Q2. T2.. Q1. T1. Scréée.. ≥0. =0 (cycle) avec. Q2 0. Q1 0. Cycle réversible : 



Solution TD Série N°2 Exercice 1 : Cycle de Joule

est ainsi retrouvée. 4) Calcul du rendement h de la machine de Carnot : • η = -WT/Q2 o Or WT 



Reconsidération du moteur de Carnot: de la faisabilité

27 août 2018 cycle de Carnot ... conformément au cycle de Carnot idéal. L'hypothèse du régime dynamique stationnaire est faite. La non adiabaticité des ...



Cycle de Carnot Exercice 3 : Cycle de Beau de Rochas

Pr ABDALLAOUI A. Exercice 1 : Cycle de Joule. Soit une machine thermique utilisant comme fluide l'air assimilé à un gaz parfait diatomique 



THERMODYNAMIQUE

Cycle de Carnot. Moteur de Stirling. 2ème principe de la thermodynamique Entropie Le cycle de Carnot est un cycle idéal qui ne correspond à aucun moteur ...



Cycle de CARNOT

La chaleur n'est autre que la puissance motrice [] qui a changé de forme. » Carnot. 1796 - 1832. 1831. Page 3. Cycle de CARNOT. Rendements. Le cycle ...



SECOND PRINCIPE DE LA THERMODYNAMIQUE : PRINCIPE DE

LE CYCLE DE CARNOT. En 1824 Sadi Carnot imagina un cycle réversible d'opérations constituant un cycle idéal. Nous allons supposer que le fluide est un gaz 



SERIE DEXERCICES N° 28 : THERMODYNAMIQUE : MACHINES

Exercice 1 : cycle de Carnot. Un gaz parfait décrit un cycle de Carnot réversible. Etablir le rendement du moteur thermique en fonction de T1 température 



Transformations réversibles-cycle de Carnot

Carnot a imaginé ce cycle pour un gaz parfait et l'a décomposé en quatre transformations dont la succession des états d'équilibre se représente dans un 



Chapitre 22 Machines thermiques

L'aire du cycle dans le diagramme de Clapeyron représente l'opposé du Le cycle ditherme théorique réversible



Thermodynamique

VI. Machines thermiques. ? Définitions. Moteurs cycliques. ? Ennoncés historiques du 2ème principe. ? Le cycle de Carnot. Rendement d'un moteur.



cours n° 7 : Les machines thermiques dithermes

Le cycle de Carnot est le cycle ditherme réversible : il assure le rendement maximal du moteur en contact avec 2 sources. Si l'extérieur évolue à la même 



Cycles frigorifiques Alessandro Parente

1 déc. 2011 Cycle de Carnot inverse. Cycle frigorifique à compression de vapeur. •Cycle de Rankine-Hirn inverse. ? Cycle idéal. ? Cycle réel.



CYCLES THERMODYNAMIQUES DES MACHINES THERMIQUES

Le rendement exergétique quantifie la qualité thermodynamique du moteur. ?ex = 1 correspond. `a un cycle idéal réversible (cycles de Carnot Ericsson



SECOND PRINCIPE DE LA THERMODYNAMIQUE : PRINCIPE DE

LE CYCLE DE CARNOT. En 1824 Sadi Carnot imagina un cycle réversible d'opérations constituant un cycle idéal. Nous allons supposer que le fluide est un gaz 



CYCLE DE CARNOT ; RENDEMENT THERMODYNAMIQUE

Le cycle de CARNOT est de tous les cycles thermodynamiques fonctionnant entre deux sources données ; celui qui a le rendement le plus élevé. C'est un.



LA THERMODYNAMIQUE

Cycle de Carnot : Rendement. Effectuons un cycle de transformation r´eversible sur 1 mole d'un gaz parfait. Calculons le rendement. Sur les 2 adiabatiques 



SERIE DEXERCICES N° 28 : THERMODYNAMIQUE : MACHINES

Exercice 1 : cycle de Carnot. Un gaz parfait décrit un cycle de Carnot réversible. Etablir le rendement du moteur thermique en fonction de T1 température de 



Clemenceau Etude des machines thermiques

PCSI 1 - Physique. Tracé du cycle de Carnot réversible (cas du moteur) : Le cycle est constitué de deux adiabatiques réversibles (pas d'échanges de.

Thermodynamique Cours 9 VI. Machines thermiquesDéfinitions. Moteurs cycliques.Ennoncés historiques du 2ème principe.Le cycle de Carnot. Rendement d'un moteur.Le refrigerateur.La pompe à chaleur.Exemples

Nombreux appereils peuvent être décrits par la thermodynamique : moteurs à essence et diesel, les réfrigérateurs, les pompes à claleur, les centrales électriques, les usines d'incinération...Une machine thermique est constituée :- D'un système (M, moteur) qui décrit un chemin thermodynamique.- Des réservoirs de travail ou de chaleur (thermostats) en contact avec luiMoteur(M)W

1 W nQnQ1

Une machine thermique, comme tout autre système, doit vérifier le premier et le deuxième principe de la thermodynamiqueMachines thermiquesSmachine th≥0 avecSmachine th=SmoteurSéchangéeScréée

Smachine th=Scréée≥0

Obtention de Travail : moteurs cycliquesPremier principe (conservation de l'énergie) : on doit fournir de la chaleur pour obtenir du travailDeuxième principe : (Kelvin) Il faut au moins une deuxième source de chaleur (il y a de pertes)Avec une différence fondamentale du point de vue thermodynamique...Moteur d'une PorscheMoteur d'une navette spatialeDeux examples de moteurs :Le travail estobtenu cycliquementLe travail n'est pasobtenu cycliquementNotre intérêt portera sur les motéurs suivant un cycle de transformations:l'état initial et final du cycle sont les mêmes.Cycle : état initial = état finalUmoteur=0 Smoteur=0

SiSmachine=Scréée=0 Cycle Réversible(parfois on écrit: Scycle=0) SiSmachine=Scréée0 Cycle Irréversible(parfois on écrit: Scycle0)

Deuxième principe de la thermodynamique: enoncés historiquesLe moteur monotherme n'existe pas : une machine dont le seul résultat est de transformeren travail de la chaleur prise à une source unique à la température T2 =cte est impossible.Ennoncé de KelvinRésultat contraire au 2ème principe, donc, impossible.L'ennoncé de Kelvin montre qu'il existe une dissymétrie entre travail et chaleurMT2ReservoirmécaniqueQWPremierprincipe:UM=WQ1(avec W<0 et Q>0)

Q T2 Scréée=SM-Q T2 ≥0 1 SM-UM-W T2 ≥0

Donc:W≥UM-TSM

Dansuncycle:UM=0 etSM=0 W≥0Contradiction !

Résultat contraire au 2ème principe, donc, impossible.Deuxième principe de la thermodynamique: enoncés historiquesLe moteur monotherme n'existe pas : une machine dont le seul résultat est de transformeren travail de la chaleur prise à une source unique à la température T2 =cte est impossible.Ennoncé de Kelvin (demonstration plus simple)MT2ReservoirmécaniqueQWPour le moteur: SM=Scréée0

Q T2 =0 car cyclique SThermo=-Q T2 on prend Q >0Le thermostat T 2 donne Q au moteur M : son entropie diminue de Q/T1

Pour le reservoir mécanique :

SRM=0 Ssystème isolé=SthermoSM0 SRM0 =-Q T2 0

Une transformation dont le seul résultat est de transférer de la chaleru d'un corps froid versun corps chaud est impossible.MT1T2QQEnnoncé de ClausiusLe thermostat T1 donne Q au moteur M : son entropie diminue de Q/T1

Le thermostat T2 reçua Q du moteur M : son entropie augmente de Q/T2

Résultat contraire au 2ème principe, donc, impossible.Variation totale d'entropie du système :S=-Q

T1 Q T2Comme T2 > T1 Þ DS < 0Deuxième principe de la thermodynamique: enoncés historiques Proposition de Carnot (le cycle de Carnot)Entropie du moteur : SM=Q2 T2 Q1 T1 Scréée≥0 =0 (cycle) avecQ20

Q10

Cycle réversible : S=Q2

T2 Q1 T1 =0 Premier principe : WQ2Q1=U=0 (cycle) Si cycle irréversible : Scréée0⇒Q2 T2 -Q1 T1 ⇒Q2 T2 --∣Q1∣ T1 ⇒Q2 T2 ∣Q1∣ T1 ⇒∣Q1 ∣ Q2 T1 T2 ir=1 Q1 Q2 =1 -∣Q1 ∣ Q2 mirmRendement mécanique maximum d'un moteur m≡∣ce qui est intéressant ce qui coûte∣=-W Q2 =Q1Q2 Q2 =1Q1 Q2 1

Si cycle réversible : Q2

T2 =-Q1 T1 ⇒m=1 -T1 T2 (Rendement de Carnot)MT2T1Q2Q1 w

ReservoirmécaniqueT2>T1Une machinediatherme

Q2 T2 Q1 T1 Rendement de moteurs réelsT2 (K)T1(K)hmhréel

Thermiques8003730.540.40

Nucléaires6203730.400.32

Automobile327014200.560.25

Réalisation du cycle de Carnot✔ Cycle diatherme (2 thermostats)✔ Agent de transformation : fluide gaz parfait✔ 2 isothermes réversibles✔ 2 adiabathiques réversibles✔ Deux répresentations : P-V (Clapeyron) T-S (diagramme entropique)T

SAB

CDT1T2Q2

Q1Cycle réversible:

S=Q2 T2 Q1 T1 =0 (2ème principe)P V T1 T2 A B C D Ucycle=0 UA-UA=0 =UA-UDUD-UCUC-UBUB-UA

Ui-Uj=QjiWji

=0

Q2 Q1 W=0

Q2 =QAB=-WAB=-∫A

B -PdV avecP=nRT2

VQ2 =nRT2 lnVB

VA 0

égalementQ1 =nRT1 lnVD

VC 0 Q2 T2 =-Q1 T1

T2T1

∣Q2 ∣∣Q1 ∣Q1 Q2 0 WQ1 Q2 =0W0La machine fourni un travailP V T1 T2 A B C

DLe sens de parcours du cycle est important➔ Sens horaire : W < 0 : la machine produit un travail➔ Sens antihoraire : W > 0 : la machine consomme un travail

Si cycle réversible : Q2

T2 =-Q1 T1 ⇒m=1 -T1 T2 (Rendement de Carnot) Autres machines thermiques diathermes : le réfrigérateuravecQ10

Q20

Cycle réversible : S=Q2

T2 Q1 T1 =0 Premier principe : WQ2Q1=U=0 (cycle)

Exemple :

T1 =2734K

T2 =273 20Km=277

16 ~17Efficacité(plutot que rendement)

m≡∣ce qui est intéressant ce qui coûte∣=Q1 W=Q1 -Q1-Q2 =Q1 -Q1Q1 T2 T1 =T1

T2 -T1

Si cycle réversible : m=T1

T2 -T1MT2T1Q2Q1

w

ReservoirmécaniqueT2>T1

Il suffit de fournir un travail de 10 Jpour extraire 170 J de chaleur du corps froid Pour les systèmes réels (irréversibles) : ~m 2 Autres machines thermiques diathermes : la pompe à chaleuravecQ10

Q20

Cycle réversible : S=Q2

T2 Q1 T1 =0 Premier principe : WQ2Q1=U=0 (cycle)

Exemple :

T1 =2734K(température d'un lac) T2 =273 20K(Itempérature d'une maison)m=293

16 ~18Efficacité(plutot que rendement)

m≡∣ce qui est intéressant ce qui coûte∣=-Q2 W=T2

T2 -T1MT2T1Q2Q1

w

ReservoirmécaniqueT2>T1Même principe que le réfrigérateur mais avecun but différent : prendre de la chaleur d'unesource froide et la transmettre à une source chaudeTrès efficace mais les installationsont un coût initial important

Fonctionnement d'une pompePistonouvertferméGaz inPistonouvertferméGaz outP basseP haute

Refrigerateur : comment ça marche ?Système à condensation avec fluide caloporteurSource froide :denrées + airSource chaude :air exterieur Detendeur EvaporateurLiquideGaz CompresseurCondensateurChaleurChaleurParois d'isolation

CFC : chlorofluorocarbones (example :dichlorodifluoromethane CCl2F2)Caractéristiques d'un bon fluide refrigérant : Points de fusion et ébullition bas Pas de toxicité, non inflammable, pas de reactivitéEvolution historique : -Amoniac-CFC(Migdley, 1928) aussi connus comme fréons.

-HCFC(decompose plus vite)- nouvelles recherches...Cl + O3 → ClO + O2

ClO + O → Cl + O2Le problème du CFC :1) Peu réactif : il survit jusqu'à sonarrivée à la stratosphère.2) Decomposé par les UV3) Réaction de desctruction de l'ozoneautocatalisée :Fluides caloporteurs

EnergieEnergie d'activationCombustibleC8H18 + 12O2 Produits8CO2 + 9H2OEnergie de la réaction5463 kJ/moleMoteur 4-temps

Moteur essenceMoteur DieselPas de bougie !! =15Rapport de compressionLa combustion du carburant injecté dans l'air à haute pression est spontanée

Moteur rotatif Wankel AdmissionEchappementCompressionExplosion Transformation directe en mouvement rotatif : moins de pièces, plus lèger, montée en régime plus rapide Desavantage majeure : plus de consommation.

Finquotesdbs_dbs10.pdfusesText_16
[PDF] cyclic amides are called which of the following

[PDF] cyclic amides examples

[PDF] cyclic amides hydrolysis

[PDF] cyclic peptide amides

[PDF] cyclic tertiary amides

[PDF] cyclopentanone retention time

[PDF] cylindrical coordinates calculator

[PDF] cylindrical coordinates conversion

[PDF] cylindrical coordinates examples

[PDF] cylindrical coordinates grapher

[PDF] cylindrical coordinates integral calculator

[PDF] cylindrical coordinates problems and solutions

[PDF] cylindrical coordinates to cartesian

[PDF] cylindrical coordinates to rectangular

[PDF] cylindrical coordinates to spherical coordinates