[PDF] MATH Tle D OK 2 La présente annale destiné





Previous PDF Next PDF



m. abdou salam diop professeur de mathematiques au lycee de koki

Je calcule. : Page 18. 18 M. ABDOU SALAM DIOP PROFESSEUR DE MATHEMATIQUES AU LYCEE DE KOKI – COURS TLE L 



RESUME DU COURS DE MATHEMATIQUES

Résumé du cours de mathématiques - ECS1 - Catherine Laidebeure - Lycée Albert Schweitzer Le Raincy Résumé du cours de mathématiques - ECS1 - Catherine ...



Cours de mathématiques - terminale S

29 mai 2011 Page 1. COURS DE MATHÉMATIQUES. Terminale S. Valère BONNET (valere ... Terminale VI. Page 99. VII.6. Utilisation des nombres complexes ...



DPFC

27 nov. 2019 CORPS DU PROGRAMME EDUCATIF. MATHEMATIQUES - TERMINALE D. COMPETENCE 1 ... Elle relève la mesure affichée sur le pèse-personne au cours de son ...



Cours complet de mathématiques pures par L.-B. Francoeur...

Cours complet de mathématiques pures. T. 1 / par L.-B. Francoeur... Page 2. Francoeur



COMBINATOIRE ET DÉNOMBREMENT

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. COMBINATOIRE ET DÉNOMBREMENT. Tout le cours en vidéo : https://youtu.be/VVY4K-OT4FI. Partie 1 



FICHE DE RÉVISION DU BAC

MATHÉMATIQUES – TOUTES SÉRIES. Statistiques. LE COURS. [Série – Matière – (Option)]. FICHE DE RÉVISION DU BAC. Note liminaire. Programme selon les sections : - 



Mathématiques Cours exercices et problèmes Terminale S

⋆⋆⋆ Très difficile – à essayer pour toute poursuite d'études exigeante en maths. Ces étoiles sont simplement un indicateur de la difficulté globale d'un 



LIMITES ET CONTINUITÉ (Partie 1)

f (x) = L. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.



MATH Tle D OK 2

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur La probabilité d'obtenir succès au cours des épreuves est : =.



m. abdou salam diop professeur de mathematiques au lycee de koki

DE MATHEMATIQUES AU LYCEE DE KOKI – COURS TLE L- 2018-2019. ACADEMIE DE LOUGA. ANNEE SCOLAIRE : 2018/2019. LYCEE DE KOKI. CLASSE : TERMINALE L'1 et L2.



Cours complet de mathématiques pures par L.-B. Francoeur...

Cours complet de mathématiques pures. T. 1 / par L.-B. Francoeur.... 1828. 1/ Les contenus accessibles sur le site Gallica sont pour la plupart.



Cours de mathématiques - terminale S

29 mai 2011 COURS DE MATHÉMATIQUES. Terminale S ... C'est dans ce sens inclusif que « ou » est utilisé en mathématiques et en logique.



Synthèse de cours (Terminale S) ? Calcul intégral

Synthèse de cours (Terminale S). ? Calcul intégral. Intégrale d'une fonction continue positive sur un intervalle [a;b]. Dans cette première partie 



Cours de mathématiques - Exo7

proposons de partir à la découverte des maths de leur logique et de leur beauté. activement par vous-même des exercices



Cours de Statistiques niveau L1-L2

7 mai 2018 Nota Bene : Les mathématiques s'exonèrent de ces considérations métaphysique par l'axiomatisation de Kolmogorov. Néanmoins la théorie des ...



Mathématiques

mathématiques de la classe de première L ou la spécialité mathématiques en classe terminale L. Il explicite et détaille les intentions du programme en 



Terminale D

Mathématiques Terminale D. Page 1 sur 39. Terminale D travail de longue haleine au cours duquel différentes contributions ont été mises à profit en vue.



Cours de mathématiques - Exo7

Elle est aussi l'occasion de découvrir la beauté des mathématiques de l'infiniment grand (les limites) à l'infiniment petit (le calcul de dérivée). L'outil 

1

BURKINA FASO

Unité - Progrès - Justice

MINISTERE

DE L'EDUCATION NATIONALE,

DE

L'ALPHABETISATION ET DE LA PROMOTION

DES

LANGUES NATIONALES

ANNALES

MATHÉMATIQUES

TERMINALE D

2

AUTEURS :

Dieudonné KOURAOGO IES

Victor T. BARRY IES

Jean Marc TIENDREBEOGO IES

Clément TRAORE IES

Bakary COMPAORE IES

Abdou KABORE CPES

Maquette et mise en page :

OUEDRAOGO Joseph

ISBN :

Tous droits réservés :

© Ministre de l'Éducation Nationale, de l'Alphabétisation

Et de la Promotion des Langues nationales

Edition :

Direction Générale de la Recherche en Éducation et de l'Innovation Pédagogique 3 4

AVANT-PROPOS

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans

son enseignement et le candidat au baccalauréat D de se préparer à l'épreuve de

mathématiques.

Cette annale comporte trois parties :

Première partie : résumé du cours par chapitre Deuxième partie : énoncés des épreuves du baccalauréat D Troisième partie : propositions de corrigés des épreuves. Les candidats ne tireront profit qu'en résolvant et trouvant par eux-mêmes les solutions sans

avoir recours aux corrigés. Les corrigés sont pour confirmer leurs justes réponses ou donner

d'autres pistes de résolution qui ne sont peut-être pas les leurs. Le succès résulte de l'effort et

de la méthode. Nous vous souhaitons du plaisir dans vos activités mathématiques et attendons vos critiques et suggestions pour des améliorations futures d'autres oeuvres.

Les auteurs

5 6

RAPPEL DE COURS

7

Chapitre : Les suites numériques

Objectifs :

· Mettre en oeuvre les énoncés admis sur les limites des suites ; · Connaître les limites et les comportements asymptotiques comparés des suites numériques.

1. Généralités sur les suites numériques

a) Définition

On appelle suite numérique, toute application

définie de ℕ (ou d'un sous ensemble de ℕ) vers ℝ. On la note ()∈ℕ (ou ()∈). b) Modes de détermination d'une suite

Une suite numérique peut être définie :

Soit par une formule explicite qui permet de calculer les termes en fonction de .

Exemples :

- Soit ()∈ℕ la suite définie par = 2 - 3. - Soit ()∈ℕ ∗ la suite définie par = Soit par la donnée d'un terme quelconque (en général son 1er terme) et d'une relation qui lie deux termes consécutifs (permettant de calculer un terme à partir du terme qui le précède).

Exemples :

- Soit ()∈ℕ la suite définie par = 3 - Soit ()∈ℕ ∗ la suite définie par = 4 + 5 , c) Sens de variation d'une suite Soit ()∈ℕ une suite numérique.

· Si pour tout

(resp. strictement croissante).

· Si pour tout

décroissante (resp. strictement décroissante).

· Si pour tout

∈ ℕ, = alors la suite ()∈ℕ est dite constante. d) Comparaisons sur les suites

Soient

()∈ℕ et ()∈ℕ deux suites numériques et 8 Si pour tout , ≥ (resp. > ) on dit que la suite () est supérieure () (resp. () est strictement supérieure à ()). Si pour tout () (resp. () est strictement inférieure à ()). On dit que la suite () est majorée s'il existe un réel ' tel que pour tout On dit que la suite () est minorée s'il existe un réel ( tel que pour tout Si la suite () est la fois minorée et majorée, on dit qu'elle bornée. Remarque : Une suite positive (resp. négative) est minorée par 0 (resp. majorée par 0).

2. Suites arithmétiques et suites géométriques

a) Suites arithmétiques

· Une suite

()∈ℕ est dite arithmétique s'il existe un réel ) tel que tout

Le réel

) s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : Si le 1er terme est alors pour tout - 1)). Pour tous entier et , (

· Soit

()∈ℕ est une suite arithmétique de raison ). Si ) > 0 alors la suite () est croissante. Si ) < 0 alors la suite () est décroissante. Si ) = 0 alors la suite () est constante.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

2. Si le 1er terme est alors la somme / des

1er termes est :

2. Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : + 1) ×(-+ -) 2. 9 b) Suites géométriques

· Une suite

()∈ℕ est dite géométrique s'il existe un réel 2 tel que tout = 2.

Le réel

2 s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : = 2. Si le 1er terme est alors pour tout = 2(). Pour tous entier et , ( = -2(-).

· Soit

()∈ℕ est une suite arithmétique de raison ). Si 2 > 1 alors la suite () est croissante. Si 0 < 2 < 1 alors la suite () est décroissante. Si 2 = 1 alors la suite () est constante. Si 2 < 0, () est une suite alternée

· Soit

()∈ℕ est une suite arithmétique de raison 2 et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

/= ×1 - 2

1 - 2.

Si le 1er terme est alors la somme / des

1er termes est :

/= ×1 - 2

1 - 2.

Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : /= -×1 - 2

1 - 2.

3. Convergence des suites numériques

a) Définition Soit ()∈ℕ une suite numérique. On dit que la suite () est convergent si elle admet une limite finie 3. On note lim→8= 3. On dit que la suite () est divergente si elle n'est pas convergente. On a lim→8= +∞ ou lim→8= -∞. b) Limite par comparaison Soit ()∈ℕ une suite numérique et S'il existe une suite () telle que pour tout , ≥ et lim→8= +∞ alors lim→8= +∞. 10 S'il existe un suite (:) telle que pour tout alors lim→8= -∞. S'il existe un réel 3 tel que pour tout lim→8:= lim→8= 3, alors lim→8= 3. Si pour tout Si pour tout c) Limite des suites monotones Soit ()∈ℕ une suite numérique. Si () est croissante et majorée alors () converge. Si () est décroissante et minorée alors () converge. Si () est monotone et bornée alors () converge. d) Convergence des suites arithmétiques et géométriques

· Convergence des suites arithmétiques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si ) = 0 alors la suite () est convergente et lim→8= . Si ) ≠ 0 alors la suite () est divergente et lim→8= +∞, ) > 0 lim →8= -∞, >? ) < 0

· Convergence des suites géométriques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si 2 = 1 alors la suite () est convergente et lim→8= Si |2| < 1 alors la suite () est convergente et lim→8= 0. Si 2 > 1 alors la suite () est divergente et lim→8= +∞, > 0 lim →8= -∞, >? < 0 e) Opérations sur les limites des suites Soit ()∈ℕ et ()∈ℕ deux suites numériques. Les propriétés sur les limites de la somme ( + ), du produit (× ) et du quotient @A BA), si ≠ 0; sont les mêmes que celles sur les limites des fonctions numériques. f) Limites des suites définies à l'aide d'une fonction

· Suite de type

= C( Soit C une fonction définie sur ℝ et () une suite définie par = C( Si C admet une limite en +∞ alors lim→8= limD→8C(E).

· Suite de type

= C() Soit C une fonction continue sur un intervalle de ℝ et () une suite numérique définie par = C().

Si la suite

() est convergente et de limite 3, alors 3 = C(3). 11

Chapitre : Courbes paramétrées

Objectifs :

· mettre en évidence et exploiter les périodicités et les symétries éventuelles, · dresser le tableau de variations des fonctions coordonnées x et y, · calculer les coordonnées (x'(t), y'(t)) du vecteur dérivé, · connaître l'interprétation cinématique du vecteur dérivé.

1. Notion de courbes paramétrées

a) Définition Le plan est rapporté à un repère orthonormal (O,F,GHIH) et I est un intervalle de ℝ. Soit

E et J deux fonctions de la variable réelle K.

A tout réel

K, on associe le point '(K) définie par le vecteur

L'GGGGGGH(K)= E(K)FH+ J(K)IH.

L'ensemble (

M) des points '( E;J) du plan tels que :

OE = E(K)

J = J(K), K ∈ est appelée courbe paramétrée de paramètre K.

On note

'(K) ( E(K);J(K)) le point de paramètre K.

Le système

OE = E(K)

J = J(K) , K ∈ est la représentation paramétrique de la courbe (C) ou le système d'équations paramétrique de la courbe (C).

Exemples de représentations paramétriques

quotesdbs_dbs20.pdfusesText_26
[PDF] cours de maths terminale s en ligne gratuit

[PDF] cours de maths terminale s gratuit pdf

[PDF] cours de maths terminale s pour les nuls

[PDF] cours de maths terminale stmg pdf

[PDF] cours de maths tronc commun bac international

[PDF] cours de mecanique (cinematique) bac marocain

[PDF] cours de mécanique des fluides niveau licence

[PDF] cours de mécanique du point matériel s1 pdf

[PDF] cours de mécanique pdf

[PDF] cours de medecine 1ere année algerie

[PDF] cours de médecine légale en pdf

[PDF] cours de microéconomie approfondie pdf

[PDF] cours de microéconomie licence 1

[PDF] cours de microéconomie licence 2 pdf

[PDF] cours de microéconomie première années des sciences économiques