[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS





Previous PDF Next PDF



Cours et exercices corrigés en probabilités

E(X) = a + b. 2 et V (X) = (b ? a)2. 12 . 3.4.2 Loi exponentielle. La loi exponentielle de paramètre ? > 0 est celle d'une variable positive de densité 



Exercices corrigés

pour la densité de probabilité gaussienne de moyenne nulle et de variance unitaire. EXERCICE 1.5.– [sin(x)/x n'est pas intégrable]. 1. Montrer que pour tout k 



Exercices et problèmes de statistique et probabilités

1.2 Axiomes du calcul des probabilités . Corrigés des exercices . ... une fonction densité de probabilité f de X vérifiant : f (x) = F (x) ou F(x) =.



Loi de probabilité `a densité : Exercices Corrigés en vidéo avec le

3) f est définie sur I=[0 ;+?[ par f(x) = e?x. Calculer des probabilités avec une variable aléatoire continue. On consid`ere la fonction f définie sur [0; +? 



Untitled

Exercice 2. Pour un certain type d'ampoules la durée de vie en heure est une variable aléatoire X dont la loi de probabilité admet une densité ƒ définie 



Exercices de probabilités avec éléments de correction Memento

On précisera leur densité (le cas échéant). Exercice 3. Somme de variables aléatoires. 1. Soit X Y des variables aléatoires indépendantes de lois P(?) et 



Intégration et probabilités (cours + exercices corrigés) L3 MASS

Intégration et probabilités. (cours + exercices corrigés) 6 Fondements de la théorie des probabilités ... 7.1.2 Densités de variables indépendantes .



Variables aléatoires continues

Exercice 1 Soit X une variable aléatoire dont la fonction de répartition est la constante A pour que la fonction f soit une densité de probabilité.



Chapitre 8 - Variables aléatoires à densité

La fonction f vérifie donc bien les trois points de la définition ci-dessus. Donc f est bien une densité de probabilité. Théorème 1 : Si X est une variable 



loi uniforme exercices corrigés. Document gratuit disponible sur

Exercice n°1 (correction). X est une variable aléatoire qui suit la loi uniforme sur l'intervalle I. Déterminer la fonction de densité de probabilité 

Integration et probabilites

(cours + exercices corriges)

L3 MASS, Universite Nice Sophia Antipolis

version 2021Sylvain Rubenthaler

Table des matieres

Introduction iii

1 Denombrement (rappels) 1

1.1 Ensembles denombrables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theorie de la mesure 5

2.1 Tribus et mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Tribus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Integrales des fonctions etagees mesurables positives. . . . . . . . . . . . . . . 9

2.4 Fonctions mesurables et integrales . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Integrales des fonctions mesurables positives . . . . . . . . . . . . . . . 10

2.4.2 Integrales des fonctions mesurables de signe quelconque. . . . . . . . . 11

2.5 Fonction de repartition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Ensembles negligeables 17

4 Theoremes limites 21

4.1 Stabilite de la mesurabilite par passage a la limite. . . . . . . . . . . . . . . . 21

4.2 Theoremes de convergence pour les integrales. . . . . . . . . . . . . . . . . . . 22

4.3 Integrales dependant d'un parametre . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Mesure produit et theoremes de Fubini 33

5.1 Theoremes de Fubini et Fubini-Tonelli . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Changement de variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Fondements de la theorie des probabilites 41

6.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Esperance d'une v.a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Inegalites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Lois classiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.1 Lois discretes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.2 Lois continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Fonctions caracteristiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Fonctions generatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i

6.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Variables independantes 59

7.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1Evenements et variables independantes . . . . . . . . . . . . . . . . . 59

7.1.2 Densites de variables independantes . . . . . . . . . . . . . . . . . . . 60

7.2 Lemme de Borel-Cantelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Somme de deux variables independantes . . . . . . . . . . . . . . . . . . . . . 62

7.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Convergence de variables aleatoires 71

8.1 Les dierentes notions de convergence . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Theoreme central-limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Conditionnement 83

9.1 Conditionnement discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2 Esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Variables gaussiennes 89

10.1 Denitions et proprietes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.2 Gaussiennes et esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . 90

A Table de la loi normale 93

Introduction

Le but de ce cours est d'introduire les notions de theorie de la mesure qui seront utiles en calcul des probabilites et en analyse. Il est destine aux etudiants qui veulent poursuivre leurs etudes dans un master a composante mathematique. Pour un cours plus complet, se reporter a la bibliographie. Informations utiles (partiels, bar^emes, annales, corriges, ...) : PREREQUIS : Pour pouvoir suivre ce cours, l'etudiant doit conna^tre, entre autres, les developpements limites, les equivalents, les etudes de fonction, le denombrement, les nombre complexes, la theorie des ensembles., les integrales et primitives usuelles, la trigonometrie, etc. Nouveautes 2019 : corrections apportees par Laure Helme-Guizon (Teaching Fellow, UNSW, Sydney, Australia) et Antoine Mal. Un grand merci a eux. iii

Chapitre 1

Denombrement (rappels)

1.1 Ensembles denombrables

Denition 1.1.1.Injection.

SoitE;Fdes ensembles,f:E!Fest une injection si8x;y2E,f(x) =f(y))x=y.

Denition 1.1.2.Surjection.

SoitE;Fdes ensembles,f:E!Fest une surjection si8z2F,9x2Etel quef(x) =z.

Denition 1.1.3.Bijection.

SoitE;Fdes ensembles,f:E!Fest une bijection sifest une injection et une surjection. Proposition 1.1.4.SoientE;F;Gdes ensembles. Soientf:E!F,g:F!G. Alors [f etginjectives])[gfinjective]. Demonstration.Soientx;ytels quegf(x) =gf(y). L'applicationgest injective donc

f(x) =f(y). L'applicationfest injective doncx=y.Denition 1.1.5.On dit qu'un ensembleEest denombrable s'il existe une injection deE

dansN. Dans le cas ouFest inni, on peut alors demontrer qu'il existe alors une bijection deEdansN. (Cela revient a dire que l'on peut compter un a un les elements deE.)

Exemple 1.1.6.Tout ensemble ni est denombrable.

Exemple 1.1.7.Zest denombrable car l'application

f:Z!N n7!(

2nsin>0

2n1sin <0

est bijective (donc injective).01 23-1-2-30 2 4

13Figure1.1 {Enumeration des elements deZ.

1

2CHAPITRE 1. DENOMBREMENT (RAPPELS)

Exemple 1.1.8.NNest denombrable car l'application

f:NN!N (p;q)7!(p+q)(p+q+ 1)2 +q est bijective (donc injective).0 129 58
74

3 6Figure1.2 {Enumeration des elements deNN.

Exemple 1.1.9.L'ensembleQest denombrable. L'ensembleRn'est pas denombrable. Proposition 1.1.10.Si on aE0,E1, ...,En, ...des ensembles denombrables alorsE= E

0[E1[E2[ =[n>0Enest un ensemble denombrable.

(En d'autres termes, une reunion denombrable d'ensembles denombrables est denombrable.) Demonstration.S Pour touti>0,Eiest denombrable donc9fi:Ei!Ninjective. Soit

F:[n>0En!NN

x7!(i;fi(x)) six2Ei Cette applicationFest injective. L'ensembleNNest denombrable donc il existeg:NN! Ninjective. Par la proposition 1.1.4,gFest injective. Donc[n>0Enest denombrable.1.2 Exercices Tous les exercices de ce chapitre n'ont pas un lien direct avec le cours. Par contre, ils constituent des revisions necessaires a la suite du cours. 1.2.1

Enonces

1) Rappel :Sif:E!FetAF,f1(A) =fx2E:f(x)2Ag. SiCE,f(C) =

ff(x);x2Cg.

On considere l'applicationf:R!R,x7!x2.

(a) Determinerf([3;1]),f([3;1]),f(]3;1]). (b) Determinerf1(] 1;2]),f1(]1;+1[),f1(]1;0][[1;2[).

2) Calculer les limites suivantes :

(a) lim x!0sin(x)log(1+x) (b) lim x!+11 +2x x (c) lim x!01cos(x)xsin(x)

1.2. EXERCICES3

(d) lim x!01(1+x)1(1+x)pour; >0.

3) Calculer les integrales suivantes :

(a)R+1

0x2exdx

(b)R+1 e

11(log(z))2zdz

(c) R1

01(2x)(1+x)dx

(d) R=4 0cos

2(x)+sin2(x)cos

2(x)dx.

4) Integrales de Wallis

Pour toutn2N, on pose :

I n=Z =2 0 sinn(x)dx : (a) CalculerI0etI1. (b) Donner une relation de recurrence entreInetIn+2. (c) En deduire que :

8p2N; I2p=(2p1)(2p3):::12p(2p2):::22

etI2p+1=2p(2p2):::2(2p+ 1)(2p1):::1: (d) Montrer que8p2N;I2p+16I2p6I2p1. En deduire que limp!+1I 2pI

2p+1= 1.

(e) En deduire la formule de Wallis : lim p!+11p

2p(2p2):::2(2p1)(2p3):::1

2 (f) Montrer que8n2N,Inn!+1p 2n.

1.2.2 Corriges

(1) (a)f([3;1]) = [1;9],f([3;1]) = [0;9],f(]3;1]) = [0;9[. (b)f1(] 1;2]) = [p2;p2],f1(]1;+1[) =] 1;1[[]1;+1[,f1(]1;0][ [1;2[) =f0g[]p2;1][[1;p2[. (2) (a) sin(x)log(1+x)x!0+xx = 1!x!0+1 (b) 1 +2x x=exlog(1+2x )etxlog1 +2x x!+12xx !x!+12 donc par continuite de la fonction exp :1 +2x x!x!+1e2 (c)

1cos(x)xsin(x)=(x2=2)+o(x2)x

2+o(x2)x!0x

22x2= 1=2

(d)

1(1+x)1(1+x)=x+o(x)x+o(x)x!0xx

(a) on integre par parties : Z +1 0 x2exdx= [x2ex]+10+Z +1 0

2xexdx

= 0 + [2xex]+10+Z +1 0 2exdx = [2ex]+10= 2 (b) changement de variable :t= log(z),z=et,dz=etdt Z +1 e

11(log(z))2zdz=Z

+1 11t 2dt = [1=t]+11= 1

4CHAPITRE 1. DENOMBREMENT (RAPPELS)

(c) on decompose

1(2x)(1+x)=1=32x+1=31+x(toujours possible pour une fraction ratio-

nelle a p^oles simples) et donc : Z 1

01(2x)(1 +x)dx=

13 log(2x) +13 log(1 +x) 1 0 =13 log(4) (d) changement de variable :t= tan(x),x= arctan(t),dx=11+t2dt Z =4 0cos

2(x) + sin2(x)cos

2(x)dx=Z

=4 0

1 + tan2(x)dx

= [tan(x)]=4 0= 1 (3) (a)I0=R=2

01dx=2

,I1=R=2

0sin(x)dx= [cos(x)]=2

0= 1. (b) On integre par parties pour toutn>2 : I n+2=Z =2 0 sinn+1(x)sin(x)dx = [sinn+1(x)cos(x)]=2

0+ (n+ 1)Z

=2 0 sinn(x)cos2(x)dx = (n+ 1)(InIn+2) d'ouIn+2=n+1n+2In. (c) Demonstration par recurrence de la formule pourI2p(demonstration similaire pour I

2p+1) :

| c'est vrai enp= 0 | si c'est vrai jusqu'au rangpalorsI2p+2=2p+12p+2I2p=(2p+1)(2p1):::1(2p+2)(2p):::22 (d)8p2N,8x2[0;=2], 06sin2p+1(x)6sin2p(x)6sin2p1(x) donc par integration

8p2N,I2p+16I2p6I2p1, donc 16I2pI

quotesdbs_dbs8.pdfusesText_14
[PDF] densité de probabilité fonction de répartition exercice corrigé

[PDF] density conversion factors table

[PDF] dental ceramics mcqs

[PDF] denver classification of chromosomes

[PDF] depart tgv nantes paris horaires

[PDF] departement de naissance 3 chiffres france

[PDF] département de naissance étranger

[PDF] département de naissance paris

[PDF] departement paris 12

[PDF] departement paris 12e

[PDF] department of justice defensive gun use

[PDF] departure tax by country

[PDF] dependent prepositions exercises pdf

[PDF] depistage coronavirus biarritz

[PDF] depth symbol alt code