[PDF] Problèmes de physique de concours corrigés – 1ère année de





Previous PDF Next PDF



la véritable définition iii. force dinertie : le mode de calcul

La force d'inertie est avec la force centrifuge et la force de Coriolis



PHQ114: Mecanique I

30 mai 2018 Le deuxième terme est une force de résistance opposée à la vitesse instantanée avec un coefficient ? ayant les unités d'un temps inverse.



LOI DU MOMENT CINÉTIQUE

Moment d'une force par rapport à un axe orienté . Exemple : bilan énergétique du tabouret d'inertie . ... T?1 ( kg.m2.s?1 en unité SI).



Problèmes de physique de concours corrigés – 1ère année de

Le centre d'inertie G de la comète (de masse volumique µc) est en orbite on peut estimer la force de cohésion P0 par unité de surface à partir de ...



RESISTANCE DES MATERIAUX

surfaces ; centre de gravité module de résistance



Chapitre 4.4 –Le moment dinertie et lénergie cinétique de rotation

Évaluons les unités de l'inertie de rotation à partir de la définition de l'énergie En rotation l'inertie d'un corps dépend de sa masse



Exp09 - Pendules mecaniques.pdf

Physique I Chapitre 3: Dynamique : Newton



Le Principe fondamental de la Dynamique

Tout corps possède une certaine inertie qui l'oblige à conserver sa vitesse à moins qu'une force extérieure l'oblige à arrêter ce mouvement.



Les lois de Newton

nécessite la définition de repère d'inertie. 2) Nécessite la définition des unités pour la force L'unité de la force est le "Newton" : N.



Unité 4 : Principe dinertie ? ? ?

Les forces sont opposées et sont de même valeur qu'elles se compensent. Les marques laissées par les points sont toujour mouvement est dit rectiligne uniforme.



[PDF] la véritable définition iii force dinertie : le mode de calcul

La force d'inertie est avec la force centrifuge et la force de Coriolis l'une des trois forces fictives utilisées par les physiciens dans le cadre de 



[PDF] Unité 4 : Principe dinertie ? ? ? - AlloSchool

Les forces sont opposées et sont de même valeur qu'elles se compensent Les marques laissées par les points sont toujour mouvement est dit rectiligne uniforme



[PDF] Origine des forces dinertie rotations absolues et principe de Mach

Les forces d'inertie s'introduisent en mécanique classique lorsque l'on étudie un problème à partir d'un référentiel non galiléen Ces forces apparaissent



[PDF] I Principe dinertie

Les forces sont additives On suppose la force invariante par changement de référentiel galiléen La norme de la force a pour unité SI le Newton (1N=1 kg 



[PDF] Chapitre 8 : les forces et le principe dinertie - Physagreg

Nous allons voir qu'il nous est possible de prévoir le mouvement du corps grâce au principe d'inertie I Forces et actions : 1) Qu'est-ce qu'une force ? Une 



[PDF] PHQ114 - Département de physique - Université de Sherbrooke

30 mai 2018 · 7 Mouvement dans un champ de force central Forces d'inertie Remarquons ici que différents vecteurs en physique ont des unités 



[PDF] Principe dinertie Tronc Commun Extraphysics

Unité 4 4 H ???? ???? ?? ???? ?? ?? ??? ? Principe d'inertie Tronc Commun Physique - Mécanique I – Effet d'une force sur le mouvement d'un corps 



[PDF] A- DYNAMIQUE - Faculté des Sciences de Rabat

s'intéresse à l'étude des forces et de leurs effets sur dans un référentiel dit référentiel d'inertie dimension (c a d sans unité) Exemples :



[PDF] Le moment dinertie et lénergie cinétique de rotation - Chapitre 2

Évaluons les unités de l'inertie de rotation à partir de la définition de l'énergie En rotation l'inertie d'un corps dépend de sa masse de sa force et

  • Quel est l'unité de l'inertie ?

    Locution nominale. (Physique) Mesure de la résistance d'un solide à l'accélération angulaire (à la modification de sa vitesse angulaire), par inertie. L'unité internationale est le kilogramme mètre carré (kg?m²).
  • Comment calculer la force d'inertie ?

    Pour un point matériel M de masse m soumis à des forces de résultante F?M, on a, d'après la 2e loi de Newton, F?M = m aM/R. est la force d'inertie de Coriolis.
  • Quelle est la formule de l'inertie ?

    Le moment d'inertie peut être dérivé comme obtenir le moment d'inertie des pi?s et en appliquant la formule de transfert: I = I0 + Un d2.
  • Une force d'inertie, ou inertielle, ou force fictive, ou pseudo-force est une force apparente qui agit sur les masses lorsqu'elles sont observées à partir d'un référentiel non inertiel, autrement dit depuis un point de vue en mouvement accéléré (en translation ou en rotation).
1

Problèmes de physique de concours

corrigés - 1ère année de CPGE scientifiques -

Olivier GRANIER

(PC*, Lycée Montesquieu, Le Mans) 2

1) Freinage d'un satellite par l'atmosphère : (Mécanique)

Un satellite terrestre artificiel (S) de vitesse

rV (dans le référentiel géocentrique galiléen) sur une orbite basse (c'est-à-dire dont l'altitude z est très inférieure au rayon terrestre R

T) subit des frottements dus à

l'atmosphère. Les molécules de l'atmosphère n'étant soumises qu'à l'agitation thermique, on pourra

négliger leur vitesse thermique v sTh≈-5001 m. devant V. On note RT et MT le rayon et la masse de la Terre, assimilée à une sphère massique homogène.

1. On suppose que, après une collision entre le satellite de masse M et une molécule de masse m, la

vitesse relative des deux objets est nulle (" choc mou »). Montrer alors que la variation de la quantité de

mouvement de (S) est

ΔrrPmV≈-.

2. Montrer que l'effet des collisions équivaut à une force

rF s'exerçant sur le satellite. Ce dernier est

sphérique, de rayon a. Déterminer rF en fonction de a, rV et la masse volumique μ(z) de l'atmosphère (en

considérant le nombre de chocs se produisant à l'intérieur d'un cylindre élémentaire, on trouve une

expression du type F k z V=( )2). Est-il indispensable que le satellite soit sphérique ?

3. On suppose qu'à l'altitude

z RT<<, μ μ( ) ( )exp( / )z z H= -0, où μ(0) et H sont des constantes. On

considère alors que, du fait de la force rF, (S) décrit une orbite circulaire autour de la Terre dont le rayon

varie lentement avec le temps.

a) Donner, sous ces hypothèses, une loi approchée de variation de z(t). Il sera avantageux d'introduire la

quantité

τ π μ=MH a R g RT T/ ( ( ) )2 020, où g0 désigne le champ de pesanteur terrestre au niveau du sol.

On note z

i l'altitude de départ. b) Applications numériques : calculer la durée de chute t ch du satellite depuis l'altitude zi=180 km jusqu'à zf=0 ; on donne : μ(0) = 1,3 kg.m - 3, H = 8 500 m, a = 2 m, g0 = 9,8.m.s - 2, RT = 6 370 km et

M kg=103. Vérifier enfin que la vitesse du satellite est effectivement grande devant la vitesse d'agitation

thermique v

Th des molécules de l'atmosphère.

Solution :

1. La conservation, lors du choc mou, de la quantité de mouvement totale du système {Satellite-

Molécule} dans le référentiel géocentrique s'écrit : 'V)mM(vmVMTh rrr+=+ La variation de la quantité de mouvement du satellite est )V'V(MP rrr-=Δ. Or, en négligeant mvTh devant

MV, il vient

VMm1VmMM'V

1rrr- ((+≈+≈, soit, au 1 er ordre en M/m , VMm1'Vrr) ((-≈. On en déduit alors que VmPrr-≈Δ.

2. On raisonne dans le référentiel géocentrique, dans lequel le satellite possède la vitesse V

r. Pendant l'intervalle de temps dt, le satellite balaye le volume )Vdta(d

2π=τ, dans lequel la masse d'atmosphère

est τμ=ddm . Le nombre de molécules rencontrées est alors m/dmdN = et la variation de quantité de mouvement due aux chocs mous entre ces molécules et le satellite sera, d'après la question précédente : dtV

VVa)V)(Vdta()P(dNPd222

rrrrμπ-=-μπ=Δ= La force résultante exercée sur le satellite est alors : V VV)a( dt PdF22 rrrμπ-== Vr

Surface " efficace » πa2

Vdt

Volume V

πa2dtSatellite

m 3

Ainsi, les chocs mous entre les molécules de l'atmosphère et le satellite sont équivalents à une force

unique de frottements de type quadratique, c'est-à-dire proportionnelle au carré de la vitesse et opposée à

celle-ci. En particulier, le coefficient k(z) introduit dans l'énoncé vaut )z(a)z(k

2μπ-=.

Si le satellite n'est pas sphérique, la surface

2aπ doit alors être remplacée par la surface transverse

balayée, encore appelée " section efficace » de chocs.

3-a) On suppose que le satellite (S) décrit une orbite circulaire autour de la Terre de rayon r légèrement

variable avec le temps. Par conséquent, la relation entre le rayon r et la vitesse V du satellite ainsi que

l'expression de l'énergie mécanique, sont : r Rg r GMV2 T 0T2 == et r RMg 2 1 r GMM 2 1E2
T0T m -=-= (avec zRrT+=) où 2 TT0R/GMg= est le champ de pesanteur terrestre au sol. La puissance de la force de frottements due aux chocs avec l'atmosphère vaut :

32V)z(aV.FPμπ-==rr

et est reliée à la variation de l'énergie mécanique du satellite par Pdt/dE m=. Comme dtdz rRMg 21
dtdr drdE dtdE22

T0mm==, il vient : 32

22

T0V)z(adtdz

rRMg

21μπ-= d'où :

2/32 T 02 22
T0 rRg)z(a2dtdz rRMg)) soit, avec )H/zexp()0()z( -μ=μ : dtgRM)0(a2dz)H/zexp(r10T2μπ-=

En posant

)RgR)0(a2/(MHT0T2μπ=τ, la relation précédente devient : dtHdtRgRM)0(a2dz)H/zexp(rRT0T2

Tτ-=μπ-=

Comme

TRz<<, 1Rz1zRR

rR 2/1 TTTT et, par conséquent : dtHdz)H/zexp(τ-=

En notant z

i l'altitude initiale à l'instant t = 0, l'altitude z atteinte à l'instant t est alors donnée par :

tH'dz)H/'zexp( z z iτ-=∫

Soit :

t1)H/zexp()H/zexp(iτ-=- ou t1)H/zexp()H/zexp(iτ-= b) Applications numériques : la durée de la chute vaut

H/zH/z

chiie)1e(tτ≈τ-= ; avec s5μ=τ, on obtient min11h2s8707t ch≈≈. La vitesse V du satellite reste sensiblement constante lors de la chute (en effet

TRr≈) et vaut :

1 T02

T0s.km9,7Rgr/RgV-===

On vérifie bien que cette vitesse est très supérieure à la vitesse d'agitation thermique 1

Ths.m 500v-≈

2

Th10.6V/v-≈).

4

2) Diffusion Rutherford : (Mécanique)

Cet exercice présente l'expérience historique de diffusion d'une particule alpha (noyau d'hélium, de

charge e2q= et de masse m) par un noyau atomique d'or (de charge Q = Ze et de masse M), réalisée par

Rutherford et ses collaborateurs vers 1910.

Au début du siècle, les atomes, selon le modèle de J.J. Thomson, étaient constitués d'une sphère pleine

uniformément chargée positivement dont le rayon était de l'ordre de

810- cm et d'électrons qui pouvaient

vibrer librement à l'intérieur de la sphère positive. Le nombre d'électrons devait satisfaire la neutralité

électrique de l'atome.

Ernest Rutherford et ses collaborateurs entreprirent de mesurer, vers 1910, la distribution de la charge

positive de la sphère du modèle de Thomson. Comme Rutherford le dit lui-même : " le meilleur moyen de

trouver ce qu'il y a dans un pudding c'est de mettre le doigt dedans ». En guise de " doigt » il projeta des

particules α au travers d'une plaque d'or afin d'en étudier la diffusion par les atomes. Les résultats qu'il

obtint montrèrent indubitablement que la charge positive des atomes ne se trouvait pas répartie dans une

sphère de 10

- 8 cm de rayon, comme le prévoyait le modèle de Thomson, mais était au contraire confinée

dans un volume beaucoup plus petit, de rayon de l'ordre de 10 - 13 cm. Cette découverte conduisit Rutherford à réviser en profondeur le modèle atomique de Thomson. Il proposa à la place un modèle de type planétaire où les charges positives, regroupées dans un très petit volume nommé le noyau atomique, occupaient une position centrale et les électrons, tels des planètes autour du Soleil, tournaient autour du noyau sur des orbites circulaires ou elliptiques. La matière paraissait ainsi constituée essentiellement de vide (" structure lacunaire » de la matière). Description du dispositif expérimental : la figure ci-dessous présente l'appareil utilisé. Au début de l'expérience, le robinet (R

2) est fermé, (R1) est ouvert et l'ampoule (A) est remplie de

radon. Le radon est un gaz radioactif qui se désintègre rapidement en donnant du radium, substance radioactive solide qui se dépose sur les parois de l'ampoule (A) ainsi que sur la lame de mica (M).

Au bout de quelques heures, la quantité de radium déposée est suffisante. On ferme le robinet (R

1), on

ouvre (R

2) et on fait le vide dans l'ensemble de l'appareillage (ampoule (A) et tube (T)).

Le radium se désintègre très lentement en émettant des particules α. On peut alors considérer que pendant

la durée de l'expérience, l'émission des particules α par la lame de mica est stationnaire : le débit

particulaire à travers les diaphragmes (D

1) et (D2) est constant dans le temps.

Après avoir franchi les diaphragmes (D

1) et (D2), les particules α traversent une feuille mince d'or (L).

quotesdbs_dbs41.pdfusesText_41
[PDF] inertie freinage project cars

[PDF] exercice electrostatique corrigé pdf

[PDF] balance de torsion de coulomb

[PDF] loi de coulomb exercices corrigés 1ere s

[PDF] force de laplace cours pdf

[PDF] loi de laplace magnétisme

[PDF] loi de laplace formule

[PDF] force de laplace exercices corrigés pdf

[PDF] force de lorentz exercice corrigé

[PDF] loi de laplace pdf

[PDF] force de laplace

[PDF] induction(correction exercice)

[PDF] propulsion fusée quantité de mouvement

[PDF] propulsion par réaction

[PDF] force de pression sur une paroi courbe