[PDF] Calcul Algébrique Déterminer l'ensemble des





Previous PDF Next PDF



Exo7 - Exercices de mathématiques

Compléter les pointillés par le connecteur logique qui s'impose : ? ?



Bric à Bacs.

21 déc. 2021 a) Déterminer l'ensemble des points N et l'enveloppe de la droite MN. ... point m d'affixe z (c'est-à-dire dont les coordonnées dans le plan ...



Calcul Algébrique

Déterminer l'ensemble des complexes z tels que les points d'affixe z 1/z



MATHÉMATIQUES

Déterminer et représenter l'ensemble des points M du plan tel que A tout point M d'affixe z = x + iy tel que x et y appartiennent à on associe le ...



ficall.pdf

On dit que A est une algèbre de parties E si les conditions Déterminer et construire l'ensemble des points M d'affixes z tels que. 1.



TS Exercices sur les nombres complexes (1)

16 sept. 2020 3°) Déterminer l'ensemble F des points M de P d'affixe z tels que Z soit imaginaire pur. Représenter F sur un graphique en prenant 2 cm ou 2 ...



Cours de PCSI au Lycée Gontran Damas

alors l'ensemble C des nombres complexes dont l'élément principal ajouté est Déterminer l'ensemble (E1) des points M d'affixes z vérifiant l'égalité :.



Mathématiques

une limite en un point la limite de leur somme est la somme de leurs limites). Dire l'ensemble des points M d'affixe z = x + iy vérifiant la relation.



Calcul Algébrique

Déterminer l'ensemble des complexes z tels que les points d'affixe z iz



Mise `a Niveau de Mathématiques

2 sept. 2014 B est une condition nécessaire pour que A soit vraie. A est une ... Représenter l'ensemble des points d'affixe z tels que. 1. Rez = ?2.



Ensemble de points dont laffixe vérifie une condition - Maths-coursfr

On vous demande de trouver l'ensemble des points M M M du plan complexe dont l'affixe z z z vérifie une certaine condition



[PDF] Nombres complexes-Représentation géométrique-Forme

Déterminer géométriquement l'ensemble des points M d'affixes z vérifiant: a) ?iz+ 1 – i?=?z+ 3? b) ?z+ 2 – i?=2 c) ?iz+ 2+ i?=3 2 Donner dans chaque 



Déterminer lensemble des points M daffixe z : 2 exemples types

11 déc 2016 · On recherche l'ensemble des points M tel que exemple 1) z - 1 = z + 1 exemple 2) z Durée : 9:39Postée : 11 déc 2016



Comment déterminer lensemble des points M daffixe z vérifiant z-zA

4 mar 2018 · Comment Booster Tes Notes dès le prochain DS ? ? Suis ce lien c'est cadeau : https://www Durée : 3:47Postée : 4 mar 2018





[PDF] Exo7 - Exercices de mathématiques

A quelle condition sur A et B ? est-elle injective ? Déterminer et construire l'ensemble des points M d'affixes z tels que



[PDF] Nombres complexes 2

Déterminer et construire l'ensemble des points M d'affixes z tels que : a) ? Z? = 1 ; b) Z soit réel ; c) Z soit imaginaire pur Si z ? 2 + i et z ? 2i 



Complexes (Exercices) 100°-1 PDF - Scribd

Ces deux racines vérifient la condition x?-2 et x?3 1 1 3 11 Déterminer l'ensemble des points M d'affixe z vérifiant (E)



[PDF] Nombres complexes - Ensemble de points

Objectif : montrer qu'un ensemble de points M vérifiant une condition est Soit (F) l'ensemble des points du plan complexe dont l'affixe z vérifie

  • Comment représenter l'ensemble des points M d affixe z ?

    L'ensemble des points M d'affixe z tels que \\left z+a+ib\\right= \\left z+c+id \\right, tels que a, b, c et d soient des réels, est la médiatrice de [AB] avec A le point d'affixe z_A=-a-ib et B le point d'affixe z_B = -c-id.
  • Comment déterminer l'ensemble des points d'un nombre complexe ?

    L'ensemble des points est le cercle de centre et de rayon privé du point d'affixe .
  • Comment déterminer l'affixe d'un point complexe ?

    Image, affixe d'un point

    1À tout nombre complexe z = a + i b ? C est associé le point M du plan de coordonnées appelé image de et noté .2A tout point M du plan de coordonnées est associé le complexe z M = a + i b appelé affixe du point M.
  • Le complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point.

Université Joseph Fourier, Grenoble I

Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies1eannéeCalcul Algébrique

Eric Dumas, Emmanuel Peyre, Bernard Ycart

Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables formelles, de réels ou de complexes. L"objectif est essentiellement pratique : " savoir calculer ». La seule nouveauté réside dans la manipulation de formules avec indices, utilisant les symboles?(somme) et?(produit). Pour le reste, vous aurez simplement à réviser votre cours de terminale sur les nombres complexes.

Table des matières

1 Cours 2

1.1 Sommes et produits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Trois formules à connaître . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Formes trigonométrique et exponentielle . . . . . . . . . . . . . . . . . 13

1.5 Géométrie du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Entraînement 17

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Compléments 37

3.1 Les formules de Ramanujan . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Le Rapido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Si non è vero, è bene trovato . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 La marquise de Tencin . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Equations résolubles par radicaux . . . . . . . . . . . . . . . . . . . . . 42

Maths en L

1gneCalcul AlgébriqueUJF Grenoble1 Cours

1.1 Sommes et produits

Nous commençons par les sommes.

L"écriture

5? k=02k se lit "somme pourkallant de zéro à cinq de deux puissancek». C"est une notation abrégée pour : 2

0+ 21+ 22+ 23+ 24+ 25.

La lettrekest l"indice de sommation. On la remplace successivement par toutes les valeurs entières comprises entre les deuxbornes, qui sont0et5dans notre exemple. La première borne, celle qui est écrite au-dessous du signe somme, sera toujours inférieure ou égale à celle qui est au-dessus. Les bornes peuvent elles-mêmes être des variables, mais elles sont nécessairement différentes de l"indice de sommation. Par exemple, pour tout entier natureln:n? k=02k désigne la somme 2

0+ 21+ 22+ 23+···+ 2n-1+ 2n.

Rappelons que, par convention,a0= 1pour tout nombre réela. Prenez l"habitude d"écrire les sommes sous forme développée quitte à introduire des points de suspension entre les premiers termes et les derniers. Voici quelques exemples d"égalités illustrant la manipulation des indices et des bornes. Nous donnons sous chaque exemple une

écriture sous forme développée.

n k=12k=n-1? h=02h+1 2

1+···+ 2n= 20+1+···+ 2n-1+1.

L"indice de sommation peut être remplacé par n"importe quel autre : on dit que c"est unevariable muette. n k=02k+n h=12n+h=2n? k=02k (2

0+···+ 2n) + (2n+1+···+ 22n) = 20+···+ 22n.

Observez que la borne peut être une des variables de la quantité à sommer. n k=02n= (n+ 1)2n 2 n+···+ 2n= (n+ 1)2n. 2

Maths en L

1gneCalcul AlgébriqueUJF GrenobleDans cet exemple la quantité à sommer ne dépend pas de l"indice de sommation : celle-

ci a pour seul effet de compter les termes. Attention, pourm6n, il y an-m+ 1 termes dans la somme demàn. n k=01 h=02k+h=1 h=0n k=02k+h (2

0+ 21) +···+ (2n+ 2n+1) = (20+···+ 2n) + (21+···+ 2n+1).

Une double somme est une somme de sommes, et on peut toujours intervertir les deux. Voici un enchaînement d"égalités, montrant que la somme des puissances de2de20 jusqu"à2nvaut(2n+1-1)(c"est un cas particulier d"une formule à connaître que nous verrons plus loin). Pour chaque ligne de calcul, nous donnons à droite l"écriture sous forme développée. On rappelle que20= 1. n k=02k= 2? n? k=02k? n? k=02k?= 2(2

0+···+ 2n)-(20+···+ 2n)

n? k=02k+1? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

n+1? h=12h? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

= 2 n+1-20= 2 n+1-1. Ce que nous venons de voir pour les sommes s"applique aussi aux produits. Le produit des entiers de1ànintervient dans de nombreuses formules. C"est lafactorielle den. Elle se note "n!». n! =n k=1k= 1 2 3···(n-2) (n-1)n . Il est souvent utile d"étendre la définition de la factorielle en convenant que0! = 1. Voici les premières valeurs.n0 1 2 3 4 5 6 7 8 9 10 n!1 1 2 6 24 120 720 5040 40320 362880 3628800 Sinest un entier positif, unn-upletdésigne une liste ordonnée denobjets. On appellepermutation des nombres de1ànunn-uplet d"entiers(u1,...,un)dans lequel chaque entier entre1etnapparaît une et une seule fois. Par exemple(5,3,2,4,1)est une permutation des nombres de1à5. Théorème 1.Le nombre de permutations des nombres de1ànestn!. Démonstration: On montre le théorème par récurrence surn. 3

Maths en L

1gneCalcul AlgébriqueUJF GrenobleSin= 1, la seule permutation des entiers de1à1est(1).

On suppose donc que le résultat est vrai pour l"entiern. Montrons-le pour l"entier n+1. Soitkun entier tel que16k6n+1et comptons le nombreAkde permutations (u1,...,un+1) telles queuk=n+ 1. À une telle permutation, associons len-uplet : (u1,...,uk-1,uk+1,...,un+1). C"est une permutation des nombres de1àn. Inversement étant donnée une permutation (v1,...,vn)des entiers de1àn, alors (v1,...,vk-1,n+ 1,vk+1,...,vn) est une permutation des entiers de1àn+ 1dont lek-ième terme estn+ 1. En appliquant l"hypothèse de récurrence, on obtient queAk=n!. Donc le nombre total de permutations des nombres de1àn+ 1est : n+1? k=1A k=n+1? k=1n! = (n+ 1)n! = (n+ 1)!. ce qui montre le résultat pourn+ 1. Pour ordonnernobjets, il faut associer à chacun un nombre entre1etnde sorte que chaque nombre renvoie à un objet et un seul. Il y a autant de manières de le faire que de permutations desnpremiers entiers :n!. Au tiercé, il y a5! = 120manières d"ordonner les 5 premiers chevaux. Une seule donne l"ordre d"arrivée, soit le quinté dans l"ordre, et il y a119quintés dans le désordre. Lenombre de combinaisonsdekobjets parminest le nombre de manières de choisir kobjets parmin, sans distinguer leur ordre. ?n k? =n!k!(n-k)!.(1)

La notation

?n k?que nous utilisons ici, de préférence à l"ancienne notationCkn, est conforme aux programmes en vigueur et à l"usage international. Nous conseillons de la lire " denchoisirk». La formule (1) correspond au raisonnement suivant. Pour choisirkobjets, on peut se donner une permutation desnobjets, et décider d"en retenir leskpremiers. Parmi les permutations, toutes celles qui auront en commun leurskpremiers nombres conduiront au même choix. Il faut donc diviser par le nombre de permutations deskobjets choisis, et par le nombre de permutations desn-kobjets qui ne l"ont pas été. Observez que (1) ne change pas si on remplacekparn-k. ?n k? =?n n-k? 4

Maths en L

1gneCalcul AlgébriqueUJF GrenobleChoisirkobjets parmin(ceux que l"on garde) revient à en choisirn-k(ceux que l"on

laisse).

Voici une autre expression de?n

k?. ?n k? =1k!k-1? h=0(n-h) =n(n-1)···(n-k+ 1)1 2···k.(2) Notez qu"il y akfacteurs au numérateur, comme au dénominateur. On obtient cette formule en simplifiant le quotientn!/(n-k)!dans (1). On peut aussi raisonner comme suit. Il y anfaçons de choisir le premier objet, puisn-1de choisir le second (puisqu"un objet a déjà été choisi), etc. Pour choisir le k-ième objet, il resten-(k-1)possibilités. Ceci correspond au numérateur de (2). Cette manière de procéder retourne une liste ordonnée. Il faut donc diviser par le nombre d"ordres possibles deskobjets choisis, qui estk!. Observez les relations suivantes, faciles à déduire de (1) ou (2) et de la définition de la factorielle. ?n k? =nk n-1 k-1? =n-k+ 1k n k-1?

Pour calculer

?n k?en pratique, on n"utilise ni (1) ni (2). Le calcul récursif par la formule dutriangle de Pascal(connue des chinois bien avant Pascal) est beaucoup plus rapide.?n k? =?n-1 k? +?n-1 k-1? .(3) Nous conseillons au lecteur de démontrer cette formule à partir des expressions (1) et (2). Voici la justification combinatoire. Supposons que parmi lesnobjets dontk doivent être choisis, l"un d"entre eux soit distingué (disons qu"il est rouge). Parmi les choix possibles dekobjets, certains ne contiennent pas l"objet rouge, d"autres le contiennent. Les premiers sont au nombre de?n-1quotesdbs_dbs41.pdfusesText_41
[PDF] equation cercle complexe

[PDF] politique économique de la chine

[PDF] les forces de l économie chinoise

[PDF] parodie de conte la belle au bois dormant

[PDF] la lune attire la terre vrai ou faux

[PDF] terre gravité

[PDF] gravité lune en g

[PDF] fiche suites terminale s

[PDF] gravitation universelle tronc commun

[PDF] formule complexe math

[PDF] formules nombres complexes terminale s

[PDF] formule complexe exponentielle

[PDF] formule complexe module

[PDF] liaison intermoléculaire et intramoléculaire

[PDF] interaction de van der waals liaison hydrogène