[PDF] Résumé dOptimisation Résumé d'Optimisation. MI5





Previous PDF Next PDF



COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin

COURS OPTIMISATION. Cours en Master M1 SITN. Ionel Sorin CIUPERCA 4.2.3 Applications de la théorie du point selle à l'optimisation . . . . . . 51.



Résumé dOptimisation

Résumé d'Optimisation. MI5 Master Pro 1`ere année 6 Optimisation avec contraintes ... Ceci un résumé des principaux résultats du cours d'optimisation.



Cours-Optimisation.pdf

Jean-Baptiste Hiriart-Urruty Optimisation et analyse convexe (exercices cor- rigés). Cependant



COURS DOPTIMISATION [.2pc] ISIMA – F4 3ème année – Master

Dualité. Algorithmes. COURS D'OPTIMISATION. ISIMA – F4 3ème année – Master Recherche Maths. Jonas Koko. ISIMA. J. Koko. Cours d'Optimisation Convexe 



Manuel de Cours Optimisation

tiellement au étudiants de Master 1 spécialité Automatique et Informatique d'optimisation sans contraintes et nous montrons par des exercices et des.



Cours Optimisation

Cours Optimisation. Cours destiné aux étudiants de première année Master TP 4 : Résolution d'un problème d'optimisation linéaire sans contraintes.



Optimisation et programmation dynamique

Ces notes sont un support pour le cours. Optimisation et programmation dynamique du Master 1 de mathématiques appliquées de l'Université Paris Dauphine.



M1 MApI3 - UE OPTIMISATION Support de cours

cours ”Fondamentaux de la recherche opérationnelle” du Master 2 MApI3. Algorithmique de l'optimisation. Un algorithme associé au probl`eme (PX) consiste `a 



Optimisation cours

Optimisation (MML1E31). Notes de cours. Master 1 Mathématiques et Modélisation (MM). 2017-2018. Bruno GALERNE. Bureau 812-F bruno.galerne@parisdescartes.fr 



Exercices sur le cours “Optimisation et programmation dynamique” 1

Exercices sur le cours. “Optimisation et programmation dynamique”. 2020-2021. Master mention Mathématiques appliquées 1`ere année. Université Paris Dauphine.

Resume d'Optimisation

MI5 Master Pro 1ere annee

Jean-Pol Guillement

Departement de Mathematiques

Nantes 2010/2011

2

Table des matieres

Introduction5

1 Rappels7

1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Condition d'ordre 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1Equation d'Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Conditions d'ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Condition de Legendre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Condition susante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Extrema lies, multiplicateurs de Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Programmation lineaire 9

2.1 Generalites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Probleme sous forme standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Caracterisation des sommets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Methode du simplexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Programmation en dimension 1 11

3.1 Generalites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Methode de Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Interpolation quadratique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Methode par decoupage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Prise en compte de la convexite 13

4.1 Condition necessaire de minimum sur un convexe . . . . . . . . . . . . . . . . . . . . . 13

4.2 Caracterisation des fonctions convexes derivables . . . . . . . . . . . . . . . . . . . . . 13

4.3 Minimum des fonctions convexes sur un convexe . . . . . . . . . . . . . . . . . . . . . 13

4.4 Fonctions coercives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5 Notation : probleme (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.6 Existence de minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.7 Fonctionnelles elliptiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.8 Caracterisation des fonctionnelles elliptiques . . . . . . . . . . . . . . . . . . . . . . . . 14

4.9 Minimum des fonctions elliptiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.10 Fonctionnelles quadratiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.11 Resolution des systemes lineaires au sens des moindres carres . . . . . . . . . . . . . . 15

4.12 Projection sur un convexe ferme non vide . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Optimisation sans contrainte 17

5.1 Methodes de descente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Methode de la relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.2 Methode de la plus profonde descente (methode du gradient) . . . . . . . . . . 17

5.2 Methode de Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Methode de la metrique variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Methode du gradient conjugue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4.1 Cas des fonctionnelles quadratiques . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4.2 Cas des fonctionnelles non quadratiques . . . . . . . . . . . . . . . . . . . . . . 19

4TABLE DES MATIERES6 Optimisation avec contraintes 21

6.1 Relations de Kuhn-Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1.1 Cas des contraintes non convexes . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1.2 Cas des contraintes convexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Interpretation des relations de Kuhn-Tucker . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 Point-selles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.4 Lagrangien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.5 Point-selle du Lagrangien et solution du probleme (P) . . . . . . . . . . . . . . . . . . 23

6.6 Probleme dual du probleme (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.7 Methode d'Uzawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.7.1 Demarche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.7.2 Calcul dek+1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.7.3 Calcul derGk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.7.4 Condition susante de convergence de la methode d'Uzawa . . . . . . . . . . . 24

Bibliographie24

Introduction

Ceci un resume des principaux resultats du cours d'optimisation. Il est autorise aux contr^oles.

6Introduction

Chapitre 1

Rappels

1.1 Notations

Sifest une fonction reguliere deE=Rn!R, on note sa derivee enx0parf0x

0ouf0(x0)(2 L(E;R)),

sa derivee seconde enx0parf00x

0ouf00(x0)(2 B(E;R)), son gradient enx0parrfx0ourf(x0)(2E),

sa matrice hessienne parr2fx0. La matrice Hessienne peut ^etre vue comme une matrice symetrique nn, comme un operateur lineaire deEdansEou comme une forme bilineaire symetrique surE.

1.2 Formules de Taylor

([3, p.151-146]) Les formules de Taylor dierent selon l'ordre, l'ecriture du reste, l'utilisation des derivees ou du gradient et de la matrice Hessienne. En voici deux exemples :

Sifest deux fois derivable on a :

f(x0+h) =f(x0) +f0(x0)h+12 f"(x0)(h;h) +"(h)khk2:

Sifest de classeC2on a :

f(x0+h) =f(x0) +ht:rfx0+12 ht:r2fx0:h+Z 1 0 (1t)ht:r2f(x0+th):h dt

1.3 Condition d'ordre 1

1.3.1

Equation d'Euler

([3, p.146]) Soit un ouvert deEet soitf: !R:Sifadmet un extremum local enx2 et sifest derivable enxalors (equation d'Euler) f

0(x) = 0

1.4 Conditions d'ordre 2

1.4.1 Condition de Legendre

([3, p.152]) Soit un ouvert deEet soitf: !R. Sifadmet un minimum local enx2 et sifest deux fois derivable enxalors (condition de Legendre) f"(x) est une forme bilineaire symetrique positive.

8Rappels1.4.2 Condition susante

([3, p.152]) Soit un ouvert deEet soitf= !R. Sifest deux fois derivable sur , sif0(x) = 0 et sif"(x) est positive dans un voisinage dex2 , alorsfa un minimum local enx:

1.5 Extrema lies, multiplicateurs de Lagrange

([3, p.148]) Soit un ouvert deE, soitf: !R, soient'i: !R;i= 1;::;m:

On suppose que les'i2 C1(

Soitx2K=fx2

;'i(x) = 0;i= 1:::mgtel que les derivees'0i(x) soient lineairement independantes (dansL(E;R)) et tel quefsoit derivable enx. Alors sifadmet un extremum local relativement aKenx, il existe1;:::;muniques (multiplicateurs de Lagrange) tels que rf(x) +1r'1(x) +:::+mr'm(x) = 0

Chapitre 2

Programmation lineaire

Pas enseigne cette annee. (Voir [3], [5], [7], [9]).

2.1 Generalites

2.2 Probleme sous forme standard

2.3 Caracterisation des sommets

2.4 Methode du simplexe

10Programmation lineaire

Chapitre 3

Programmation en dimension 1

3.1 Generalites

3.2 Methode de Newton

3.3 Interpolation quadratique

3.4 Methode par decoupage

12 Programmation en dimension 1

Chapitre 4

Prise en compte de la convexite

4.1 Condition necessaire de minimum sur un convexe

([3, p.153])

SoitKun convexe dans

ouvert deE. Soitf: !R: Sifadmet un minimum relativement aKenx, et sifest derivable enxalors (Inequation d'Euler) f

0(x)(xx)08x2K

4.2 Caracterisation des fonctions convexes derivables

([3, p.154-155]))

SoitKun convexe dans

ouvert deE. Soitf: !Rderivable sur

1.fest convexe surKsi et seulement si

f(x)f(x0) +f0(x0)(xx0)8x;x02K

2.fest strictement convexe surKsi et seulement si

f(x)> f(x0) +f0(x0)(xx0)8x;x02K; x6=x0

3. On suppose quefest deux fois derivable dans

. Alorsfest convexe surKsi et seulement si f"(x)(yx;yx)0;8x;y2K

4. On suppose quefest deux fois derivable dans

. Si f"(x)(yx;yx)>0;8x;y2K;x6=y alorsfest strictement convexe surK.

4.3 Minimum des fonctions convexes sur un convexe

([3, p.156-175])

SoitKun convexe dans

ouvert deE, soitf: !Rconvexe surK.

1. Sifadmet un minimum local enx2K, relativement aK, ce minimum est un minimum global.

2. Sifest strictement convexe surK;fadmet au plus un minimum local relativement aK(qui

est aussi un minimum strict et global)

3. Sifest derivable enx2K, alorsfadmet un minimum par rapport aKenxsi et seulement

si (Inequation d'Euler) f

0(x)(xx)08x2K

ou, en terme de gradient (rfx;xx)0;8x2K:

14 Prise en compte de la convexite

4. SiKest un sous espace vectoriel l'inequation d'Euler est equivalente a

f

0(x)(x) = 0;8x2K:

ou, en terme de gradient rfx?K

5. SiKest ouvert, l'inequation d'Euler est equivalente a la condition d'Euler

f

0(x) = 0

4.4 Fonctions coercives

([3, p.175])

Une fonctionf:E!R, est dite coercivesi lim

kxk!1f(x) = +1

4.5 Notation : probleme(P)

Dans la suite, quand on parle du probleme (P), il s'agit de la recherche dextel que (P)(f(x) = infx2KEf(x) x 2K

4.6 Existence de minimum

([3, p. 175])

1. SiKest un ferme borne non vide deE, sifest continue alors le probleme (P) a au moins une

solution.

2. SiKest ferme non borne deE, sifest continue et coercive, alors le probleme (P) a au moins

une solution.

3. SiKest un convexe ferme non vide deE, sifest continue, coercive, strictement convexe sur

K, alors le probleme (P) a une solution et une seule.

4.7 Fonctionnelles elliptiques

([3, p. 183]) Une fonctionf:E!R, de classeC1est dite elliptiques'il existe >0 tel que (rfx rfy;xy)kxyk28x;y2E

4.8 Caracterisation des fonctionnelles elliptiques

Une fonctionf:E!R, deux fois derivable, est elliptique si et seulement si il existe >0 tel que (r2fx0x;x)kxk2;8x;x02E

4.9 Minimum des fonctions elliptiques

SoitKest un convexe ferme non vide deEetf:E!Relliptique.quotesdbs_dbs6.pdfusesText_11
[PDF] cours optimisation pdf

[PDF] cours optique géométrique mpsi

[PDF] cours optique géométrique smpc s2 pdf

[PDF] cours optique ondulatoire prépa

[PDF] cours organisation des entreprises pdf

[PDF] cours outils mathématiques

[PDF] cours outlook 2010 pdf

[PDF] cours paces ue3 pdf

[PDF] cours paie pdf

[PDF] cours pc 4eme pdf

[PDF] cours pdf économie de la construction

[PDF] cours permanente cap coiffure

[PDF] cours permanente coiffure

[PDF] cours pharmacologie 3eme annee medecine

[PDF] cours philosophie terminal e