[PDF] Physique terminale S 12 avr. 2019 a) Calculer





Previous PDF Next PDF



Résumés de cours de Physique-Chimie Terminale S

Résumés de cours de Physique-Chimie. Terminale S. P.-M. CHAURAND. Lycée de Chamalières. Année scolaire 2013-2014. Page 2. Table des matières. 1. Ondes et 



Terminale S PHYSIQUE - CHIMIE FICHES RESUMES DE COURS Terminale S PHYSIQUE - CHIMIE FICHES RESUMES DE COURS

LHC au CERN (Genève) permettent une identification des particules produites lors des chocs. Page 8. Thierry CHAUVET. Terminale S - Page 6 sur 44. Physique - 



PHYSIQUE TERMINALE S PHYSIQUE TERMINALE S

Page 1. PHYSIQUE. TERMINALE S. 218 exercices corrigés. ▫ Mécanique (98 exercices cours de ce mouvement si l'accélération est de 25dar.s−2. 2. Ecrire l ...



Physique terminale S PDF

12 avr. 2019 a) Calculer les coordonnées du vecteur vitesse au cours du temps b) Déterminer la vitesse du point M à l'instant t = 5 s. PAUL MILAN. 3.



PHYSIQUE-CHIMIE- TECHNOLOGIE

TOMASINO et al. ➢ Sciences physiques. Rappels de Cours et exercices corrigés. Collection Union Bac. Terminales D C et E. ➢ Physique Terminale 



Physique terminale S

1 août 2013 6. PHYSIQUE-CHIMIE. TERMINALE S. Page 7. 4.3 APPLICATION. Exemple : log x = 2 321 alors 102 < x < 103. Propriétés de la fonction logarithme ...



Exercices corrigés de Physique Terminale S Exercices corrigés de Physique Terminale S

débat quand il ne s'agit pas de simples rappels de cours. Je souhaite à tous mes lecteurs une brillante réussite dans leurs projets. Je serais heureux de 



Physique terminale S

9 nov. 2018 TERMINALE S. Page 2. TABLE DES MATIÈRES. 1 La diffraction des ondes. Définition 1 : On appelle diffraction le phénomène au cours duquel une ...



[PDF] ANNALES SCIENCES PHYSIQUES Terminale D - Faso e

légers s'unissent au cours d'un choc pour donner un noyau plus lourd sciences physiques en classe de terminale. − Lire attentivement l'exercice ...



Physique terminale S

30 août 2013 l'énergie totale d'un système au cours d'une évolution est donc uniquement égale a la somme des travaux W et des transferts thermiques Q ...



Terminale S PHYSIQUE - CHIMIE FICHES RESUMES DE COURS

Thierry CHAUVET. Terminale S - Page 1 sur 44. Physique - Chimie - Lycée. Résumés de cours de Physique Chimie - Terminale S. Sciences S.



Physique terminale S

12 avr. 2019 a) Calculer les coordonnées du vecteur vitesse au cours du temps b) Déterminer la vitesse du point M à l'instant t = 5 s.



ANNALES SCIENCES PHYSIQUES Terminale D

6. I. GENERALITES. Les contenus abordés en classe de terminale D se présentent légers s'unissent au cours d'un choc pour donner un noyau plus lourd.



Cinématique et dynamique du point matériel (Cours et exercices

forces centrales. À la fin de ce polycopié nous proposons quelques exercices corrigés. Page 6. Calcul vectoriel.



Physique terminale S

1 août 2013 6. 4.2 Rappel mathématique sur la fonction logarithme décimal . ... La période T



Physique terminale S

9 nov. 2018 Définition 1 : On appelle diffraction le phénomène au cours duquel une onde qui traverse une petite ouverture ou rencontre un petit objet ...



Cours doptique géométrique – femto-physique.fr

1609-1610 Galileo Galilei construit une lunette astronomique avec laquelle il découvrira les taches solaires et 3 satellites de Jupiter. (Callisto Europe



Exo-PC-Terminale-S.pdf

FASCICULE D'EXERCICES DE PHYSIQUE ET CHIMIE DE. LA CLASSE DE TERMINALE S On mesure à pression constante



Cours Thème I ACQUISITION DUNE GRANDEUR PHYSIQUE

TS IRIS ( Physique Appliquée ) Christian BISSIERES http://cbissprof.free.fr. Page 1 sur 12. Thème 1 : LES CAPTEURS. Cours Thème I.



PHYSIQUE

Terminales C D

Physique terminale S

DERNIÈRE IMPRESSION LE12 avril 2019 à 18:16

Chapitre 5

Les lois de la mécanique et ses outils

Table des matières

1 Les référentiels et repères2

2 Les grandeurs de l"évolution2

2.1 Le vecteur de position. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Le vecteur vitesse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Le vecteur accélération. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Quelques mouvements classiques5

3.1 Le mouvement rectiligne uniforme. . . . . . . . . . . . . . . . . . . 5

3.2 Le mouvement uniformement varié. . . . . . . . . . . . . . . . . . 6

3.3 Le mouvement circulaire uniforme. . . . . . . . . . . . . . . . . . . 6

3.4 Le mouvement circulaire non uniforme. . . . . . . . . . . . . . . . 7

4 Les forces usuelles8

4.1 Le poids (force de champ). . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 La réaction (force de contact). . . . . . . . . . . . . . . . . . . . . . 8

4.3 Tension d"un fil (force de contact). . . . . . . . . . . . . . . . . . . . 8

4.4 La poussée d"Archimède. . . . . . . . . . . . . . . . . . . . . . . . . 9

4.5 La force gravitationnelle (de Newton, force de champ). . . . . . . . 9

4.6 La force électrostatique (de Coulomb, force de champ). . . . . . . . 9

5 Les lois de Newton10

5.1 Première loi ou principe d"inertie. . . . . . . . . . . . . . . . . . . . 10

5.2 Deuxième loi ou principe fondamental de la dynamique. . . . . . 10

5.3 Troisième loi ou principe de l"action et de la réaction. . . . . . . . . 11

5.4 Application des lois de Newton. . . . . . . . . . . . . . . . . . . . . 11

PAUL MILAN1 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

1 Les référentiels et repères

Définition 1 :On appelleréférentielun objet par rapport auquel on étudie un mouvement. On distingue trois types de référentiel : •Leréférentiel terrestre: le solide de référence est un objet fixe à la surface de la Terre. Les trois axes sont, par exemple, la verticale, les axes est-ouest et nord-sud. Ce référentiel est adapté à l"étude des mouvements de faible amplitude et de courte durée à la surface de la Terre tels que les mouve- ments étudiés dans un laboratoire. •Leréférentiel géocentrique: le solide de référence est le centre de la Terre. Les trois axes sont dirigés vers trois étoiles fixes. Un tel référentiel subit le mouvement de révolution de la Terre autour du Soleil mais pas le mou- vement de rotation de la Terre autour de l"axe des pôles. Il est adapté à l"étude du mouvement des satellites en orbite autour de la Terre. •Leréférentiel héliocentrique: le solide de référence est le centre du So- leil. Les trois axes sont les mêmes que ceux du référentiel géocentrique, dirigées vers trois étoiles fixes. Il est adapté à l"étude des astresen orbite autour du Soleil. Définition 2 :Pour les mouvements dans l"espace, on associe au référentiel un repère cartésien(O,?ı,??,?k)défini par une origine et trois vecteurs unitaires deux à deux perpendiculaires. On réduit ce repère à (O,?ı,??)pour un mouvement plan et par (O,?ı)pour un mouvement rectiligne.

2 Les grandeurs de l"évolution

2.1 Le vecteur de position

Définition 3 :Tout objet ponctuel M dans l"espace, est repéré par trois coor- donnéesx,y,z, fonction du tempst, dans le repère(O,?ı,??,?k)associé au référen- tiel. On définit alors levecteur position--→OM et la distance OM par :

OM=x(t)?ı+y(t)??+z(t)?kOM=?

x2(t) +y2(t) +z2(t) Les fonctionsx(t),y(t)etz(t)sont appeléeséquations horairesdu mouvement du point M. La courbe décrite par M en fonction du temps est appeléetrajectoiredu point M Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =t+1,y(t) =3t-2 etz(t) =2. a) Décrire la trajectoire du point M b) Déterminer la distance OM à la datet=3 s

PAUL MILAN2 PHYSIQUE-CHIMIE. TERMINALES

2. LES GRANDEURS DE L"ÉVOLUTION

a) Pour déterminer la trajectoire du point M, il faut éliminer le temps en déter- minant une relation entrex,yetz. Par exemple, on exprimeten fonction de x:t=x-1 que l"on remplace dans l"expression dey. On obtient alors : ?y=3(x-1)-2 z=2??y=3x-5 z=2 La trajectoire du point M est donc une droite d"équationy=3x-5 dans le plan d"altitude 2 b) Pour déterminer la distance OM, il faut calculer la norme du vecteur--→OM à la datet=3 s. On trouve alors M(4;7;2), d"où : OM=?

42+72+22=⎷69?8,31 m

2.2 Le vecteur vitesse

Définition 4 :On définit le vecteur vitesse?vcomme la dérivée du vecteur de position en fonction du temps. v=d--→OM dtsoit?v=dxdt?ı+dydt??+dzdt?k Le vecteur vitesse est toujours tangent à la trajectoire Remarque :On utilise de préférence la notation différentielle pour la dérivée, plutôt que la notation mathématiquex?(t),y?(t)etz?(t), rappelant ainsi que la vi- tesse est obtenue comme le rapport d"une variation de position sur unevariation du temps. vm: vm=---→OM2----→OM1 Si l"on veut connaître l"intensité de la vitesse, il suffit de prendre la norme du vecteur vitesse : v=||?v||=? ?dx dt? 2 +?dydt? 2 +?dzdt? 2 Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =2t2-3t+1,y(t) =3t-2 etz(t) =2. a) Calculer les coordonnées du vecteur vitesse au cours du temps b) Déterminer la vitesse du point M à l"instantt=5 s

PAUL MILAN3 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

a) On dérive les coordonnées du point M en fonction du temps, on obtient alors : v= (4t-3 ; 3 ; 0) b) Pour déterminer la vitesse du point M à l"intantt=5 s, il faut calculer la norme du vecteur vitesse à l"instantt=5 s v(5) =?

172+32+02=⎷298?17,26 m.s-1

2.3 Le vecteur accélération

Définition 5 :D"une façon analogue au vecteur vitesse?v, on définit le vecteur accélération ?acomme la dérivée du vecteur vitesse en fonction du temps a=d?v dtsoit?a=dvxdt?ı+dvydt??+dvzdt?k Si on revient au vecteur position, le vecteur accélération est doncla dérivée se- conde du vecteur--→OM en fonction du temps. En utilisant la notation différen- tielle, on obtient : a=d2--→OM dt2soit?a=d2xdt2?ı+d2ydt2??+d2zdt2?k Remarque :La notationd2xdt2qui se lit " dé deuxxsur détdeux » correspond à la dérivée seconde dexen fonction du temps qui s"écrit en mathématiquex??(t) Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =2t2-3t+1,y(t) =3t-2 etz(t) =2. Déterminer la l"accélération du point M à l"instantt=2 s Il faut dériver deux fois les coordonnées du point M, pour obtenirle vecteur ac- célération a= (4 ; 0 ; 0)soita=4 m.s-2

2.4 Application

Les coordonnées d"un mobile dans le plan

(O,?ı,??), associé au référentiel ter- restre, sont données par :?x(t) =4t-2 y(t) =t2-2t+1 a) Déterminer la position du mobile aux instantst=0 ett=2 s b) Déterminer l"accélération du mobile à l"instantt=10 s c) Établir l"équation cartésienne de la trajectoire du mobile M et en donner une représentation en indiquant le sens de parcours du point M

PAUL MILAN4 PHYSIQUE-CHIMIE. TERMINALES

3. QUELQUES MOUVEMENTS CLASSIQUES

a) On détermine les coordonnées du point M aux instantt=0 ett=2 s --→OM(0) = (-2 ; 1)et--→OM(2) = (6 ; 1) b) Pour déterminer l"accélération à l"instantt=10 s, il faut dériver deux fois le vecteur position : v= (4 ; 2t-2)et?a= (0 ; 2) L"accélération est donc constante donca(10) =2 m.s-2 c) Pour déterminer l"équation carté- sienne de la trajectoire, il faut éliminer tdes équations horaires. De l"expres- sion dex(t), on a :t=x+2

4que l"on

remplace dans l"expression dey(t)en remarquant que : t

2-2t+1= (t-1)2

y=?x+2 4-1? 2 =?x+2-44? 2 (x-2)2

16=116x2-14x+14

1 2 3 4 5 6 7 8 9-1-20

-11 23
?M(0)? M(2)quotesdbs_dbs2.pdfusesText_2
[PDF] cours physique terminale s pdf 2013

[PDF] cours physique tronc commun bac international

[PDF] cours physique udem

[PDF] cours physique université

[PDF] cours physiques collège pdf gratuit

[PDF] cours pile ? combustible pdf

[PDF] cours pmp gratuit

[PDF] cours politique monétaire pdf maroc

[PDF] cours pour devenir hacker pdf

[PDF] cours pour gps garmin

[PDF] cours pratique de maintenance informatique pdf

[PDF] cours pratique gestion commerciale

[PDF] cours préhistoire 6ème

[PDF] cours prepa physique

[PDF] cours primaire pdf