[PDF] Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et





Previous PDF Next PDF



Espaces vectoriels

Exercice 32. Soit ℳ3(ℝ) l'espace vectoriel des matrices à coefficients dans ℝ à 3 lignes et 3 colonnes. Soit 3 



Exercices corrigés Alg`ebre linéaire 1

(3) Montrer que pour tout x ∈ E



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Soit E et F deux IK espace vectoriels et fg deux applications linéaires de E dans F. Linéaire et. Calcul Algébrique sur les Matrices avec Exercices Corrigés.



Applications linéaires matrices

https://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



Polycopié MAT101

29 mars 2023 l'espace vectoriel E est combinaison linéaire des vecteurs u1...



Espaces vectoriels

Dans R3 donner un exemple de deux sous-espaces dont l'union n'est pas un sous-espace vectoriel. Indication Τ. Correction Τ. Vidéo □. [006869]. Exercice 4.



Exercices corrigés algèbre linéaire

Soit E un espace vectoriel de dimension finie n et f un endomorphisme de E. 1. On suppose que f est nilpotent c'est-à-dire qu'une certaine puissance de f est 



ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 4. Problème : Dans l'espace vectoriel E = M2(R) de dimension 4 on considère les matrices suivantes :........ = 00. 01.



Algèbre Linéaire

18 déc. 2013 On appelle forme linéaire sur E un K-espace vectoriel toute ap- ... Exercice Corrigé Pour ce type d'exercices un raisonnement par analyse ...



Feuille dexercices I : révisions dalgèbre linéaire 1

Exercice 3. Soit E un espace vectoriel de dimension 3 et de base b = (e1e2



Espaces vectoriels

Exercice 32. Soit ?3(?) l'espace vectoriel des matrices à coefficients dans ? à 3 lignes et 3 colonnes. Soit 3 



Espaces vectoriels

Dans R3 donner un exemple de deux sous-espaces dont l'union n'est pas un sous-espace vectoriel. Indication ?. Correction ?. Vidéo ?. [006869]. Exercice 4.



Exercices corrigés Alg`ebre linéaire 1

En donner une base et la dimension. Exercice 10 Soient (E+



70 exercices dalg`ebre linéaire 1 Espaces vectoriels

Calculer les dimensions de E ? F et du sous-espace vectoriel de R4E + F



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Notion de Matrice Associée à une Application Linéaire et Calcul. Algébrique sur les Matrices avec Exercices Corrigés. 57. 1. Espace vectoriel des matrices.



Algébre Linéaire 1 - DS 2 - corrigé

Exercice 1. Soit E un espace vectoriel réel. i) Donner la définition d'une famille finie libre de vecteurs de E. ii) Donner la définition du rang d'une 



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf



Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et

linéaire (par linéarité de la dérivation) on en déduit que toute fonction Exercice 3 : Soit e un K-espace vectoriel de dimension finie n ? N? et f.



Espaces vectoriels de dimension finie 1 Base

Chacune de ces conditions se vérifie par un système linéaire. Indication pour l'exercice 2 ?. E est un sous-espace vectoriel de R4.



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Le K-espace vectoriel qui comporte un seul élément l'élément nul 0

Séance de soutien PCSI2 numéro 10 : Espaces

vectoriels et applications linéaires. Correction des exercices.

Tatiana Labopin-Richard

Mercredi 18 mars 2015

Exercice 1 :Montrer que sif:R→Rest polynômiale de degré 2, alors pour tous réelsaetb: f(b)-f(a) = (b-a)f??a+b2

Correction :

Sifest constante égale à 1, alors la propriété est clairement vérifiée. De même sif=id. De plus, sifest la fonction carrée, alors, pour tous réelsaetb: f(b)-f(a) =b2-a2= (b-a)(b+a)f??a+b2 donc la propriété reste vraie. Comme cette propriété est sable par combinaison

linéaire (par linéarité de la dérivation), on en déduit que toute fonction polynômiale

de degré deux vérifie cette propriété. Exercice 3 :SoiteunK-espace vectoriel de dimension finien?N?etf un endomorphisme deEtel qu"il existe un vecteurx0?Epour lequel la famille (x0,f(x0),...,fn-1(x0))soit une base deE. On note

C={g? L(E)/g◦f=f◦g}.

1) Montrer queCest un sous-espace vectoriel deL(E).

2) Observer que

C=?(a0Id+a1f+...an-1fn-1|a0,...an-1?K?.

3) Déterminer la dimension deC.

1

Correction :

1)C ? L(E),0? C. Soientλetμdeux élément s deKetgethdeux éléments

deC. On a

f◦(λg+μh) =λ(f◦g) +μ(f◦h) =λ(g◦f) +μ(◦f) = (λg+μh)◦f

doncλg+μh? C. b) Soitg=a0+a1f+···+an-1fn-1. On ag◦f=a0f+a1f2+···+an-1fn=f◦g doncg? C. Ainsi, ?a

0Id+a1f+...an-1fn-1|a0,...an-1?K?? C.

Inversement, soitg? C. Puisque(x0,f(x0),...fn-1(x0))est une base deE, il existea0,a1,...an-1?Ktels queg(x0) =a0x0+a1f(x0)+...an-1fn-1(x0). Introduisons alorsh=a0Id+a1f+...an-1fn-1. Nous avonsgethdeux

éléments deCetg(x0) =h(x0)donc

g(f(x0)) =f(g(x0)) =f(h(x0)) =h(f(x0)) et de manière plus générale g(fk(x0)) =fk(g(x0)) =fk(h(x0)) =h(fk(x0)) Ainsi,gethprennent mêmes valeurs sur la base(x0,f(x0),...fn-1(x0))) doncg=h. Ainsi nous avons l"inclusion dans l"autre sens et donc l"égalité. c) On aC=V ect(Id,f,f2,...fn-1). De plus, sia0Id+a1f+...an-1fn-1(x0) = 0.Or, la famillex0,...fn-1(x0)) est libre donca0=a1=...an-1= 0. La famille(Id,f,...fn-1)est une famille libre et génératrice deC, c"est donc une base et a dimension deCest den. Exercice 4 :SoientEun espace vectoriel de dimension finie et(u,v)? L(E). montrer que

Ker(f)?Ker(g)? ?h? L(E), g=h◦f.

Correction :

Le sens indirect est immédiat. Montrons le sens direct. Supposons queker(f)? ker(g). SoitHun supplémentaire deker(f)dansE.fréalise un isomorphisme deHversIm(f)notéf|Im(f). SoientKun supplémentaire deIm(f)dansEet h? L(E)déterminé par h |Im(f)=g◦f-1 |Im(f) 2 et h |K= 0.

Pour toutx?H,

(h◦f)(x) =h(f|H(x)) =g(f-1 |H(f|H(x))) =g(x) Les applicationsgeth◦fcoÃŕncidant sur des cous-espaces vectoriels supplé- mentaires, elles sont égales. Exercice 7 :Montrer que les parties suivantes sont des espaces vectoriels.

1)F={f? C1([a,b]),R)|f?(a) =f?(b)}.

2)G=?? C0([a,b]),R)|?b

af(t)dt= 0?.

Correction :

1)F? F([a,b],R)et0?F.

Soientλetμdeux réels etfetgdeux éléments deF. La fonctionλf+μg est de classeC1sur[a,b]et (λf+μg)?(a) =λf?(a) +μg?(a) =λf?(b) +μg?(b) = (λf+μg)?(b) doncλf+μg?F. b)G? F([a,b],R)et0?G. Soientλetμdeux réels etfetgdeux éléments deg. La fonctionλf+μgest continue sur[a,b]et b a(λf+μg)(t)dt)λ? b af(t)dt+μ? b ag(t)dt= 0 doncλf+μg?G.

Exercice 8 :SoitFun sous-espace vectoriel deEet

N={f? L(E), F?Ker(f)}.

Montrer queNest un sous-espace vectoriel deL(E).

Correction :

On peut montrer à la main queNest un sous-espace vectoriel deL(E):N n"est pas vide car comprend l"endomorphisme nul deE. Et pour tout scalaireλet μ, tous élémentsfetgdeN, et tout vecteurxdeF: (λf+μg)(x) =λf(x) +μg(x) = 0E. On peut aussi prouver ce fait en remarquant que l"application 3

φ:L(E)→ L(E,F)

f?→f|F(1) et linéaire, donc son noyauNest un sous-espace vectoriel deL(E). Exercice 9 :SoitFl"ensemble des applications de classeC1deRdansR vérifiant f ?(x)-3f(x+ 2) +f(2) +f?(-1) = 0 pour tout réelx. Montrer queFest un espace vectoriel.

Correction :

La dérivation deC1(R,R)dansC0(R,R)) est linéaire, ainsi que la composition à droite parx?→x+ 2, et toute évaluation donc

φ:C1(R,R)→ C0(R,R)

f?→(x?→f?(x)-3f(x+ 2) + 2f(2) +f?(-1))(2) est linéaire et son noyauEest un sous-espace vectoriel deC1. Exercice 10 :Montrer que l"ensembleFdes triplets(x,y,z)de réels vérifiant : x+y+z= 0

2x-y+z= 0

x-2y= 0(3) est un sous-espace vectoriel deR3.

Correction :

On peut bien entendu vérifier à la main que le vecteur nul est dans l"ensemble et que cet ensemble est stable par combinaison linéaire. Mais, de manière plus élé- gante, on peut aussi voirFcomme intersection de trois noyaux de formes linéaires non nulles surR3(la première étant(x,y,z)?→x+y+z), c"est à dire de trois hyperplans deR3. Exercice 11 :Les parties suivantes sont-ils des espaces vectoriels deR2?

2){(x,y)?R2|x=}

3){(x,y)?R2|x2-y2= 0}

4){(x,y)?R2|xy= 0}

5){(x,y)?R2|x+y= 1}

6){(x,y)?R2|x2+y2= 0}

4

Correction :

1) non : pas stable par multiplication par un scalaire :(0,1)appartient mais

pas-(0,1).

2) non : pas stable par addition :(1,0) + (0,1).

3) oui.

4) non : ne passe pas par(0,0).

5) non : pas stable par addition :(1,1) + (1,-1).

6) oui (c"est l"espace nul!).

Exercice 12 :Les parties suivantes sont-elles des sous-espaces vectoriels de R N?

1)?(un)?RN|(un)bornée?

2) ?(un)?RN|(un)monotone? 3) ?(un)?RN|(un)convergente? 4) ?(un)?RN|(un)arithmétique?

Correction :

1) oui

2) non : pas stable par addition :un=n2etvn=-9n+ 20.

3) oui

4) oui

Exercice 13 :A quelle condition la réunion de deux sous-espaces vectoriels est-elle un sous-espace vectoriel?

Correction :

SoientFetGdeux sous-espaces vectoriels deK-espace vectorielE. SiF?G ouG?FalorsF?GvautFouGet est évidemment un sous-espace vectoriel de E. Inversement, supposons queF?Gsoit un sous-espace vectoriel deEetF*G. Il existex?Ftel quex?=G. Pour touty?G,x+y?F?Gpar stabilité par somme. Six+y?G, alorsx= (x+y)-y?G, ce qui est exclu. Doncx+y?F et alorsy= (x+y)-x?F. Ainsi,G?F. Ainsi pour queF?Gsoit un sous-espace vectoriel deE, il faut et il suffit

F?GouG?F.

Exercice 14 :SoitEunK-espace vectoriel et-→x ,-→ztrois vecteurs deEtelq que la famille(-→x ,-→y ,-→z)soit libre. On pose u=-→y+-→z ,-→v=-→z+-→x ,-→w=-→x+-→y . Montrer que la famille(-→u ,-→v ,-→w). 5

Correction :

Supposons que

On aurait alors

(β+γ)-→x+ (α+γ)-→y+ (β+α)-→z=-→0.

La famille(-→x ,-→y ,-→z)étant libre, nous avonsβ+γ= 0,α+γ= 0etα+β= 0

et doncα=β=γ= 0. La famille est donc libre. Exercice 15 :Soitα1...αndes réels distincts.

1) Pour toutk? {1,...n}, on définitfk:x?→ |x-αk|. Montrer que

(fk)k?{1,...n}est libre.

2) Pour toutk? {1,...n}, on posePk=?

i=1,i?=k(X-αi).Montrer que(Pk)k?{1,...n} est libre.

Correction :

1) Pour toutk? {1,...n}, la propriété "être dérivable enαk" est vraie pour

tous lesfipouri?=kmais fausse pourfk. On dit que cette propriété est discriminante pourk. Ainsi, soient(a1,...an)des scalaires tels que a

1f1+...anfn= 0.

Nous avons alors pourkfixé, siakest différent de 0, f k=a1fa+...ak-1fk-1+ak+1fk+1+...anfna k ce qui est absurde puisque la fonction de gauche n"est pas dérivable enαk alors que celle de droite l"est. Ainsi, on peut montrer que pour toutk,ak= 0.

2) De la même manière, la propriété "admettreαkcomme racine" est discrimi-

nante pourPket donc la famille est libre. Exercice 16 :Soitα1...αndes entiers distincts ordonnés par ordre croissant.

1) On considère une famille(P1,...Pn)de polynÃťmes tels que pour toutk?

{1,...n},deg(Pk) =αk. Montrer que cette famille est libre.

2) Pour toutkentier, on posefk:x?→exp(αkx). Montrer que pour unen

fixé, la famille(f1,...fn)est libre.

Correction :

1) Pour toutk? {1,...n-1}, on introduit la propriétéPk: "être de degré

au plusαk". On dit que les propriétés(P1,...Pn-1)hiérarchisent l"ensemble 6 (P1,...Pn-1), parce que(P1,...Pk)vérifientPk, et(Pk+1,...Pn)ne vérifient pasPk. Soit ainsi,a1,...andes scalaires non tous nuls tels que a

1P1+...anPn= 0.

Notonsil"indice maximal desaknon nuls.

Nous avons

P i=ai+1Pi+1+...anPn-ai et le terme de gauche vérifie la propriétéPialors que le terme de droite non. Ainsi, nous arrivons à une absurdité. Il n"existe donc pas de tels scalaire non tous nuls vérifiant l"équation précédente et la famille est libre.

2) Pour toutk, on pose les propriétésPk: " être dominée au voisinage de+∞

parfk". L"ensemble(P1,...Pn)hiérarchise l"ensemble des fonctions que nous considérons. La famille est donc libre. Exercice 17 :Les familles suivantes de vecteurs deR3sont-elles libres? Si ce n"est pas le cas, former une relation liant ces vecteurs :

1)(x1,x2)avecx1= (1,0,1)etx2= (1,2,2).

2)(x1,x2,x3)avecx1= (1,2,1),x2= (2,1,-1)etx3= (-1,1,-2).

3)(x1,x2,x3)avecx1= (1,0,0),x2= (1,1,0)etx3= (1,-1,-2).

4)(x1,x2,x3)avecx1= (1,-1,1),x2= (2,-1,3)etx3= (-1,1,-1).

Correction :

1) oui

2) oui

3) nonx3=x2-x1

4) nonx3=-x1

Exercice 18 :Soit(a,b,c)?R3. les fonctionsx?→sin(x+a),x?→sin(x+b) et?→sin(x+c)sont-elles linéairement indépendantes? CorrectionNon car les ces trois fonctions sont combinaisons linéaires des deux fonctiosn suivantes : x?→sin(x), x?→cos(x). Exercice 19 :Soientf1,...fndes formes linéaires sur unK-espace vectorielE de dimensionn. On suppose qu"il existex?Enon nul tel que f

1(x) =···=fn(x) = 0.

Montrer que la famille(f1,...fn)est liée.

7 Correction :Soitφune forme linéaire ne s"annulant pas enx. Celle-ci n"est pas combinaison linéaire des(f1,...fn). Cette famille n"est donc pas génératrice et par suite elle est liée car formée den=dimE?éléments deE?. Exercice 20 :SoitE={(x,y,z)?R3|x+y-2z= 0et2x-y-z= 0}. Chercher une famille génératrice pour cette espace vectoriel. Correction :Le vecteur(1,1,1)forme une famille génératrice deE. (Il suffit pour le remarquer de transformer le système définissantEen le systèmex=y=z. Exercice 21 :SoitE={(x1,x2,x3,x4)?R4|x1+x3= 0et, x2+x4= 0} etF=V ect(u1= (1,1,1,1),u2= (1,-1,1,-1),u3= (1,-1,1,-1)). Déterminer une famille génératrice deE+F.

Correction :

Soitu= (x1,x2,x3,x4)?E. Nous avons

x 1=-x3 x

2=-x4(4)

Ainsi, on peut prendreu4= (-1,0,1,0)etu5= (0,-1,0,1)deux vecteurs non proportionnels qui forment donc une base deE(qui est donc de dimension 2). PourF, il est clair queu1+u2= 2u3donc la famille(u1,u2,u3)est liée. Ainsi,

F=V ect(u1,u2,u3) =V ect(u1,u2)

et les vecteursu1,u2n"étant pas colinéaires, ils forment une famille libre qui engendreF, c"est donc une base deFdont la dimension est donc 2. Ainsi, une famille génératrice deE+Fest donc(u1,u2,u4,u5). En effet, soit x?E+F,?u?Fetv?Etels quex=u+v. Mais?a1,a2,a3,a4tels que u=a1u1+a2u2etv=a3u4+a4u5d"où le résultat. Exercice 22 :SoitEunK-espace vectoriel de dimension 3 ete= (e1,e2,e3) une base deE. On pose

1=e2+ 2e3,?2=e3-e1, ?3=e1+ 2e2.

Montrer que?est une base deE.

Correction :

On montrer que la nouvelle famille est libre. En supposant queλ1?1+λ2?2+

3?3= 0, on trouve que(λ3-λ2)e1+ (λ1+ 2λ3)e2+ (2λ2+λ2)e3= 0. Comme la

famille(e1,e2,e3)est une base, c"est une famille libre. Nous avons doncλ3-λ2= 0,

1+ 2λ3= 0et2λ2+λ2= 0d"oùλ1=λ2=λ3= 0et la famille est libre. Nous

8 avons une famille libre de même cardinal que la base initiale, il s"agit donc aussi d"une base. Exercice 23 :DansR4, on considère l"ensembleEdes vecteurs(x1,x2,x3,x4) vérifiantx1+x2+x3+x4= 0. L"ensembleEest-il un espace vectoriel? Si oui, en donner une base.

Correction :

En posantφ: (x1,x2,x3,x4)?→x1+x2+x3+x4, nous avons facilement que l"ensemble considéré est un espace vectoriel puisque que c"est le noyau deφqui est linéaire. Le théorème du rang nous donne alors que la dimension de ce noyau vaudra

3 puisqueφest surjective ( le rélaa pour antécédent(a4

quotesdbs_dbs48.pdfusesText_48
[PDF] algèbre linéaire exo7

[PDF] algèbre linéaire pour les nuls

[PDF] algèbre linéaire: matrice

[PDF] algebre pdf

[PDF] algebre s2 economie exercices corrigés pdf

[PDF] algebre s2 economie pdf

[PDF] algebre s2 exercices corrigés pdf

[PDF] algérie 1

[PDF] algérie ancienne colonie française

[PDF] algerie ancienne photos

[PDF] algerie news

[PDF] algerie part

[PDF] algérie patriotique

[PDF] algo mas terminale corrigé

[PDF] algo mas terminale corrigé pdf