[PDF] Forme trigonométrique dun nombre complexe – Applications





Previous PDF Next PDF



Forme trigonométrique dun nombre complexe. Applications Niveau

Représenter ces points dans le plan complexes. 2. Déterminer le module et un argument de chacun de ces nombres. Page 6. 2 °) Forme trigonométrique 



Forme trigonométrique dun nombre complexe – Applications

Détermination de formes trigonométriques. 6. Page 7. 4 APPLICATIONS GÉOMÉTRIQUES DES NOMBRES COMPLEXES. 2. Si z 



NOMBRES COMPLEXES (Partie 2)

b) Le point M d'affixe z appartient à l'axe des imaginaires. c) d) Ses résultats se déduisent par symétrie. II. Forme trigonométrique d'un nombre complexe.



Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1 : On donne 0

Mettre sous forme trigonométrique les nombres complexes suivants ainsi que leur conjugués : 1 = 3 + 3 ; 2 = ?1 ? ?3; 3 = ?.



Université Toulouse 3 Département de Mathématiques Année 2016

On partage le plan complexe en 8 zones D1 `a D8 (voir figure 2). 2. Mettre sous forme polaire (ou trigonométrique) les nombres complexes suivants et les.



Nombres complexes

2. Donner sous forme polaire



NOMBRES COMPLEXES

2°) La forme trigonométrique de z est une écriture z = r(cos? + i sin?) avec r = OM =





Untitled

Exercice 2. On note 21 = ?6+ i?2. 2. 1. Écrire Z1 Z2 et 23 sous forme trigonométrique. 2. En déduire des expressions de cos et sin 7.



NOMBRES COMPLEXES

Exemple 2 : déterminer la forme trigonométrique de z = ?3?2i . Comme le montre la figure ci-contre le nombre complexe z est cette fois l'affixe d'un point du.



[PDF] Forme trigonométrique dun nombre complexe Applications Niveau

- Démonstration - Exercice: Montrer que les points A(-2i) B(-2-5i) et C(4+4i) sont alignés 4°) Equations du Second degré dans C a) Equation du type az2+bz+c 



[PDF] Première STI 2D - Nombres complexes - Forme trigonométrique

Forme Trigonométrique I) Module et argument d'un nombre complexe 1) Définitions Soit le nombre complexe On note M le point d'affixe dans le repère



[PDF] Trigonométrie et nombres complexes

2 sept 2015 · La formule fondamentale à retenir est la suivante : cos(?)2 + sin(?)2 = 1 En divisant cette égalité par cos(?) 



[PDF] Forme trigonométrique dun nombre complexe

En vertu des relations élémentaires de trigonométrie tout nombre complexe admet l'écriture sous forme trigonométrique suivante : z = r(cos(?) + i sin(?)) avec 



[PDF] NOMBRES COMPLEXES – Chapitre 1/2 - maths et tiques

Définition : On appelle forme trigonométrique d'un nombre complexe non nul l'écriture = (cos + sin ) avec = ( ) Partie 2 : Forme 



[PDF] NOMBRES COMPLEXES

1°) Donner la forme exponentielle de Z 2°) Donner les formes algébriques de z1 et z2 En déduire la forme algébrique de Z 3° 



[PDF] Ecriture algébrique écriture trigonométrique écriture exponentielle

3 + 2 i est une écriture algébrique Pour l'écrire sous forme trigonométrique ou exponentielle on a besoin de son module et de son argument



[PDF] Nombres complexes - Melusine

1 3 - Forme trigonométrique forme 2 2 2 - Inverse et quotient de deux nombres complexes 2 2 3 - Opérations sous forme trigonométrique



[PDF] Les nombres complexes (III) Forme trigonométrique dun nombre

2 d'où ?= 3? 4 [2?] Bien connaître les angles remarquables du cercle trigonométrique est un atout Exercices en ligne pour calculer des modules et 

:

Forme trigonométrique

d"un nombre complexe - Applications

Christophe ROSSIGNOL

Année scolaire 2019/2020Table des matières

1 Représentation géométrique d"un nombre complexe

2

1.1 Rappels : affixe d"un point

2

1.2 Affixe d"un vecteur

3

2 Forme trigonométrique3

2.1 Argument d"un nombre complexe non nul

3

2.2 Forme trigonométrique d"un complexe non nul

5

2.3 Égalité de deux nombres complexes

6

2.4 Cas d"un produit ou d"un quotient

6

3 Forme exponentielle7

4 Applications géométriques des nombres complexes

7

4.1 Distances et angles orientés

7

4.2 Caractérisation des cercles et des médiatrices

8

4.3 Pour aller plus loin...

8

Table des figures

1 Interprétation géométrique

2

2 Argument d"un nombre complexe

4

3 Module et argument de l"opposé et du conjugué

4

4 Forme trigonométrique d"un nombre complexe

5

5 Triangle rectangle isocèle direct

9

6 Triangle équilatéral

9 ?

Ce cours est placé sous licence Creative Commons BY-SAhttp://creativecommons.org/licenses/by-sa/2.0/fr/

1

1 REPRÉSENTATION GÉOMÉTRIQUE D"UN NOMBRE COMPLEXE

1 Représentation géométrique d"un nombre complexe

1.1 Rappels : affixe d"un pointDéfinition :Soit(O;?u;?v)un repère orthonormé direct etzun nombre complexe de forme algébrique

z=a+ib. Le p ointM(a;b)est appeléimage de z. (voir figure1 )

On dit que Ma pouraffixe z.

La distance OMest appeléemo dulede z. On note|z|=OM.Figure1 - Interprétation géométrique Conséquences :1.L"ensem bledes nom bresréels est représen tépar l"axe des abscisses. L"ensemble des imaginaires purs est représenté par l"axe des ordonnés. 2.

On a |z|=⎷a

2+b2.

3.|z|= 0si et seulement siz= 0.Propriété :Soitz?C.

On a :

|z|2=zz

Démonstration :

On notez=a+ibla forme algébrique du complexez.

zz= (a+ib)(a-ib) =a2-(ib)2=a2+b2=|z|2Propriété :Affixe du milieu d"un segment

SoitAetBdeux points d"affixes respectiveszAetzB.

On noteIle milieu du segment[AB].

Alors, l"affixe deIest :

z

I=zA+zB2

Exercice :Démontrer cette propriété à l"aide des coordonnées du milieu d"un segment. 2

2 FORME TRIGONOMÉTRIQUE 1.2 Affixe d"un vecteur

1.2 Affixe d"un vecteur

Définition :Soit-→wun vecteur de coordonnées?a b?

On appelle

affixe de -→wle complexez=a+ib.Propriété 1 :SoientAetBdeux points d"affixes respectiveszAetzB. Alors, le vecteur--→ABa comme affixezB-zA.Démonstration : SizA=xA+iyAetzB=xB+iyB(formes algébriques), alorsA(xA;yA)etB(xB;yB).

Les coordonnées du vecteur

--→ABsont donc?xB-xA y B-yA? . Par suite, son affixe est : z= (xB-xA) +i(yB-yA) = (xB+iyB)-(xA+iyA) =zB-zA Remarques :Il découle facilement des règle de calcul sur les coordonnées de vecteurs que : 1. Deux v ecteursson tégaux si et seuleme ntsi leurs affixes son tégales 2. Si -→wet-→w?sont deux vecteurs d"affixes respectiveszetz?etkun réel : l"affixe de -→w+-→w?estz+z?; l"affixe de k-→westkz. 3.

On p eutdonc utiliser les affixes p ourdéterminer une colinéarité de v ecteurs,don cp ourd éterminer

un parallélisme ou un alignement. Exercices :66, 67, 70 page 2541- 68, 69 page 2542[TransMath]

2 Forme trigonométrique d"un nombre complexe non nul

2.1 Argument d"un nombre complexe non nulDéfinition :Soitzun nombre complexenon n ulet Mle point d"affixez(voir figure2 ).

On appelle

argumen t de ztoute mesure en radians de l"angle? ?u;--→OM? . On le notearg(z). il est défini

à2kπprès (k?Z).

On a donc :

arg(z) =? ?u;--→OM? [2π]Remarques :1.Si zest un réel, c"est-à-direz=a: si a >0,|z|=aetarg(z) = 0 si a <0,|z|=-aetarg(z) =π 2.

Si zest un imaginaire pur, c"est-à-direz=ib:

si b >0,|z|=betarg(z) =π2 si b <0,|z|=-betarg(z) =-π2 Propriété :Module et argument de l"opposé et du conjugué Soitzun complexe non nul etM1,M2,M3etM4les points d"affixes respectivesz,z,-zet-z. Par des considérations géométriques simples sur la figure 3 , on obtient : |z|=|z|=|-z|=|-z| arg(z) =-arg(z) [2π] arg(-z) =π+ arg(z) [2π] arg(-z) =π-arg(z) [2π]1. Affixe d"un point, d"un vecteur.

2. Ensembles de points

3

2.1 Argument d"un nombre complexe non nul 2 FORME TRIGONOMÉTRIQUE

Figure2 - Argument d"un nombre complexeFigure3 - Module et argument de l"opposé et du conjugué 4

2 FORME TRIGONOMÉTRIQUE 2.2 Forme trigonométrique d"un complexe non nul

Exercices :72, 73, 74 page 2543[TransMath]

2.2 Forme trigonométrique d"un complexe non nulThéorème - Définition :Tout nombre complexe non nulzs"écrit sous la forme suivante :

z=r(cos(θ) +isin(θ))avecr=|z|etθ= arg(z) [2π]

Cette forme est appelée

for metrigonométrique du complexe z.Démonstration :

On noteMle point d"affixez,r=OMetθ=?

?u;--→OM? [2π]. La demi-droite[OM)coupe le cercle trigonométrique en un pointA(voir figure4 ).

Les coordonnées deAsont(cos(θ) ; sin(θ))et, comme--→OM=r-→OA, les coordonnées deMsont

(rcos(θ) ;rsin(θ)).

L"affixe deMest donc :

z=r(cos(θ) +isin(θ))Figure4 - Forme trigonométrique d"un nombre complexe

Exercice :22 page 2444[TransMath]Lien entre forme algébrique et forme trigonométrique :Soitzun complexe non nul de forme al-

gébriquez=a+ibet de forme trigonométriquez=r(cosθ+isinθ). Alors :

Si l"on c onnaîtretθ:?

a=rcosθ b=rsinθ

Si l"on c onnaîtaetb:

r=|z|=?a

2+b2et?

cosθ=ar sinθ=br

Exemple :Soitz=⎷3-i.

r=???⎷3-i???=?? ⎷3

2+ (-1)2=⎷3 + 1 =

⎷4 = 2 cosθ=⎷3 2 sinθ=-12

On a doncarg(z) =θ=-π6

[2π]. Exercices :20 page 244 et 77 page 2555- 90 page 2566[TransMath]3. Argument d"un nombre complexe.

4. Forme trigonométrique d"un complexe non nul.

5. Passage de la forme algébrique à la forme trigonométrique.

6. Ensembles de points.

5

2.3 Égalité de deux nombres complexes 2 FORME TRIGONOMÉTRIQUE

2.3 Égalité de deux nombres complexes

Propriété :Égalité de deux complexes

Les complexesz=r(cosθ+isinθ)etz?=r?(cosθ?+isinθ?)avecr >0etr?>0sontégaux si et seulement si : r=r?

θ=θ?[2π]Remarque :Attention!L"h ypothèser >0est essentielle pour obtenir la forme trigonométrique d"un

nombre complexe. Exemples :Donner la forme trigonométrique des complexesz1=-3?cos?π4 ?+isin?π4 ??etz2= 2?cos?π6 ?-isin?π6 La forme d onnéep ourz1n"est pas une forme trigonométrique :z1=-3?cos?π4 ?+isin?π4

On a :z1= 3?-cos?π4

?-isin?π4 ??avec? cos?5π4 ?=-cos?π4 sin ?5π4 ?=-sin?π4 La forme trigonométrique dez1est donc :z1= 3?cos?5π4 ?+isin?5π4 ??, c"est-à-dire|z1|= 3et arg(z1) =5π4 [2π]. La forme d onnéep ourz2n"est pas une forme trigonométrique :z2= 2?cos?π6 ?-isin?π6

On a :z2= 2?cos?π6

?+i?-sin?π6 ???avec? cos?-π6 ?= cos?π6 sin ?-π6 ?=-sin?π6 La forme trigonométrique dez2est donc :z2= 2?cos?-π6 ?+isin?-π6 ??, c"est-à-dire|z2|= 2et arg(z2) =-π6 [2π].

Exercice :78 page 2557[TransMath]

2.4 Cas d"un produit ou d"un quotientPropriété :Module et argument d"un produit et d"un quotient

Soientzetz?deux nombres complexes non nuls. On a : |zz?|=|z| × |z?|etarg(zz?) =arg(z) + arg(z?) [2π]???zz ????=|z||z?|etarg?zz arg(z)-arg(z?) [2π]Démonstration (partielle) : On notez=r(cosθ+isinθ)etz?=r?(cosθ?+isinθ?)les formes trigonométriques dezet dez?.

On a donc :?

|z|=r arg(z) =θ[2π]et? |z?|=r? arg(z?) =θ?[2π]

De plus :

zz =rr?[(cosθcosθ?-sinθsinθ?) +i(cosθsinθ?+ sinθcosθ?)] =rr?[cos(θ+θ?) +isin(θ+θ?)] Donc, d"après l"unicité de la forme trigonométrique : |zz?|=rr? arg(zz?) =θ+θ?[2π] Exercice :En suivant un raisonnement analogue, montrer la deuxième partie de la propriété. Remarques :1.Si nest un entier naturel non nul etzun complexe non nul : |zn|=|z|netarg(zn) =narg(z) [2π]7. Détermination de formes trigonométriques. 6

4 APPLICATIONS GÉOMÉTRIQUES DES NOMBRES COMPLEXES

2.

Si zun complexe non nul :????1z

???=1|z|etarg?1z =-arg(z) [2π] Exercices :76 page 254; 79, 80, 81 page 2558- 99, 101 page 2579- [TransMath]

3 Forme exponentielle d"un complexe non nulDéfinition :Pour toutθ?R, on note :

e iθ= cosθ+isinθRemarque :" eiθ» se lit " exponentielle deiθ».

Exemples :

ei0= 1eiπ2 =ieiπ=-1e-iπ2 =-ieiπ4 =⎷2 2 +i⎷2 2

Propriété :Soientθetθ?deux réels.

e iθeiθe

iθ?=ei(θ-θ?)Remarques :1.La démonstration de cette pr opriétéest la même que celle du 2.4 , en prenantr=r?= 1.

2.

On retrouv eles propriétés " classiques » de l"exp onentielle,ce qui justifi een partie la notation.

3. L"exp onentiellecomplexe se man ipulecomme une puissance, ce qui rend les calcu lssur les argumen ts plus faciles.Propriété 2 :Formule deMoivre

Soitθun réel etnun entier naturel. On a :

?eiθ?n=einθRemarque :1.C"est une conséquence directe de la Propriété 1. Ce résultat se montre par récurrence

surn. 2.

On a don c:

(cos(θ) +isin(θ))n= cos(nθ) +isin(nθ)Propriété :Soientθetθ?deux réels. e

iθ=eiθ?équivaut àθ=θ?[2π].Définition :Tout nombre complexeznon nul, dont un argument estθ, peut s"écrire sous la

forme :z=|z|eiθ;quotesdbs_dbs21.pdfusesText_27
[PDF] forme trigonométrique cos et sin

[PDF] démonstration forme exponentielle nombre complexe

[PDF] nombre complexe forme algébrique

[PDF] comment avoir une bonne note en philo explication de texte

[PDF] comment faire une puissance sur une calculatrice casio graph 35+

[PDF] enlever ecriture scientifique casio graph 35+

[PDF] comment faire une puissance sur une calculatrice casio graph 35+e

[PDF] forme trigonométrique de

[PDF] comment faire une puissance sur une calculatrice casio graph 25+

[PDF] calculatrice ecriture scientifique en ligne

[PDF] confiance au travail définition

[PDF] confiance en soi au travail

[PDF] confiance définition

[PDF] la confiance au travail karsenty

[PDF] coalition