[PDF] Combinatoire des fonctions de parking: espèces énumeration d





Previous PDF Next PDF



PS : Règlement Sécurité incendie ERP Parcs de Stationnement

19 déc. 2017 Le nombre de places de stationnement pris en compte dans un parc de stationnement couvert tient compte des dispositions suivantes : - les ...



Combinatoire des fonctions de parking: espèces énumeration d

15 févr. 2016 In particular cases with x : m ? a + b(m ? 1) we define a bijection between the x-parking tables and new tree structures.



LES PARCS DE STATIONNEMENT

En ouvrage (parking ou enclos) : le paiement du stationnement s'effectue sur les caisses Cette nouvelle compétence comprend la définition de.



Proposed By-Law L-722 Residential Parking Permit (14.fev.2022)

14 févr. 2022 Words used in this By-Law and not defined herein which are defined in the Motor Vehicle Act shall have the meaning as therein defined.



Présentation PowerPoint

Parking employés. Oct 2013 - Parking. Législation. Une opportunité nouvelle lié à un nouveau marché. I. Entreprise. II. Parking PSSLV. ? Définition.



RÈGLEMENT INTÉRIEUR POUR LES USAGERS DU PARKING

Article 1 Définition le CROUS à stationner dans le parking ou à évoluer dans celui-ci au titre d'une ... Article 2 Conditions d'utilisation du parking.



Parking Cash-Out

Le terme anglais utilisé est « Parking Cash-Out » que nous pourrions traduire par « allocation stationnement ou argent comptant ». Page 5. Les avantages d'une 



Conception dun système de parking automatisé pour les voitures

15 juin 2017 Définition du parking. Le parking d'automobiles est un ensemble des voitures immatriculées stationner pendant.



Some properties of the parking function poset

15 nov. 2021 In 1980 Edelman defined a poset on objects called the noncrossing 2- partitions. They are closely related with noncrossing partitions and ...



A BY-LAW TO PROHIBIT AND REGULATE THE PARKING

"Parked Park or Parking" means to allow a vehicle to remain stationary except in obedience to traffic regulations



Parking - Wikipédia

Un parking parc de stationnement aire de stationnement ou stationneur est un espace ou un bâtiment spécifiquement aménagé pour le stationnement des 



[PDF] Modélisation et simulation du système de stationnement pour la

3 sept 2018 · Parking management is a key lever for the modal orientation of urban travel Indeed restrictions by scarcity or price penalize the automobile 



[PDF] la gestion du stationnement dans les aires tod des municipalités de

Le stationnement est un enjeu traité traditionnellement par les municipalités par l'imposition de normes minimales de construction selon des standards élevés



[PDF] LES PARCS DE STATIONNEMENT - ANFA

Le stationnement payant s'organise en deux types de parcs : • En ouvrage (parking ou enclos) : le paiement du stationnement s'effectue sur les caisses 



[PDF] LE STATIONNEMENT : LES MARCHÉS LES ACTEURS - Indigo

Définition : Contrat par lequel un propriétaire confie l'exploitation d'un parc de stationnement à un exploitant en contrepartie d'une



[PDF] PARKING AUTOMATIQUE

1- PRESENTATION DU SYSTEME : On se propose d'étudier le fonctionnement d'une barrière de parking de stationnement de véhicule La barrière fonctionne en tenant 



[PDF] Barrière de parking Gestion par API

La barrière doit pouvoir fonctionner quelle que soit la longueur du véhicule (il est sous-?entendu que les capteurs "a" et "b" peuvent être actionnés en même 



[PDF] Politique de stationnement - outils et mise en œuvre - Sareco

Se développe actuellement un mode de pensée où par définition la construction de places de stationnement est un événement à éviter



[PDF] La gestion du stationnement en entreprise

20 nov 2017 · ? La place de parking est considérée comme un droit acquis par certains ! ?Attention : pas forcément la plus efficace ! ? Le temps de voyage 



[PDF] Optimisation de la gestion dun parking automatisé

1 1 Définition du parking Le parking est un lieu spécialement aménagé pour le garage des automobiles qui stationné pendant un temps déterminé

Un parking, parc de stationnement, aire de stationnement ou stationneur, est un espace ou un bâtiment spécifiquement aménagé pour le stationnement des  Type de parkings · Parking de surface · Technique · Ventilation
  • Quelle est la définition du mot parking ?

    1. Synonyme de parc (de stationnement). 2. Ensemble d'emplacements pour garer les voitures en sous-sol d'un immeuble ou au pied de celui-ci ; chacun de ces emplacements.
  • Quel est la fonction d'un parking ?

    Un parking est un espace aménagé spécialement pour tous les usagers de la route afin qu'ils puissent stationner leurs véhicules en toute sécurité.
  • Comment décrire un parking ?

    Un parking, parc de stationnement, aire de stationnement ou stationneur, est un espace ou un bâtiment spécifiquement aménagé pour le stationnement des véhicules. Il peut être public ou privé, en enclos, en élévation ou souterrain.
  • On distingue les parkings en surface, les parkings souterrains ou fermés, les parkings aériens à étages, les parkings ouverts, les parkings ou parcs relais (P+R).
Séminaire Lotharingien de Combinatoire84B(2020)Proceedings of the 32ndConference on Formal Power Article #59, 12 pp.Series and Algebraic Combinatorics (Online)

Some properties of the parking function poset

Bérénice Delcroix-Oger

*1, Matthieu Josuat-Vergès1,3, and Lucas Randazzo 2 1

IRIF, Université de Paris, France

2LIGM, Université Gustave Eiffel, Champs-sur-Marne, France

3CNRS Abstract.In 1980, Edelman defined a poset on objects called the noncrossing 2- partitions. They are closely related with noncrossing partitions and parking func- tions. To some extent, his definition is a precursor of the parking space theory, in the framework of finite reflection groups. We present some enumerative and topological properties of this poset. In particular, we get a formula counting certain chains, that encompasses formulas for Whitney numbers (of both kinds). We prove shellability of the poset, and compute its homology as a representation of the symmetric group. Résumé.En 1980, Edelman a défini un ordre partiel sur des objets appelés les 2- partitions non-croisées. Elles sont intimement reliées aux partitions non-croisées et aux fonctions de stationnement. Dans une certaine mesure, sa définition est un précurseur de la théorie des espaces de stationnement. Nous présentons quelques propriétés énumératives et topologiques de cet ordre. En particulier, nous obtenons une formule comptant certaines chaînes, qui inclut des formules pour les nombres de Whitney (des deux espèces). Nous prouvons l"épluchabilité du poset, et calculons son homologie en tant que représentation du groupe symétrique. Keywords:parking functions, noncrossing partitions, poset topology, representations, symmetric group

Introduction

Parking functionsare fundamental objects in algebraic combinatorics. It is well known that the set of parking functions of lengthnhas cardinalityn+1n1, and the natural action of the symmetric groupSnon this set occurs in the deep work of Haiman [5] about diagonal coinvariants. Generalizations to other finite reflection groups lead to the parking space theoryof Armstrong, Reiner, Rhoades [1,8 ]. The poset mentioned in the title was introduced by Edelman [ 4 ] in 1980, as a variant of thenoncrossing partition latticeintroduced by Kreweras [7] (hence the namenoncrossing

2-partitionsin [4]). One striking feature of Edelman"s definition is that it really fits well in*

bdelcroix@irif.fr

2Bérénice Delcroix-Oger, Matthieu Josuat-Vergès, and Lucas Randazzo

the noncrossing parking space theory mentionned above, so it seems that this overlooked poset can give a new perspective on recent results about parking functions. Our goal is to obtain new enumerative and topological properties of Edelman"s poset. Through various bijections, we will see that several variants of the same objects are relevant:

2-noncr ossingpartitions (

Section 1.1

some pairs of a noncr ossingpartition together with a per mutation(

Section 1.2

parking functions in the usual w ay(

Section 1.3

parking tr ees(

Section 1.3

The latter, which have the additional structure of aspecies, will be useful to write func- tional equations and get our enumerative results in

S ection2

. What we get is a formula counting chains ofkelements whose top element has rank`. A nice feature of this for- mula is that it encompasses a nice formula for Whitney numbers of the second kind at k=1 (this one being obtained by Edelman), and one for Whitney numbers of the first kind atk=1. Then we go on to topological properties: we will see in

S ection3

that the poset is shellable. Unlike the case of noncrossing partitions which can be treated by EL- shellability, we need here the notion ofrecursive atom ordering(equivalent to the notion of CL-shellability). Still, the EL-shellability of noncrossing partitions is a key tool. There are well known consequences of shellability such as Cohen-Macauleyness, and hence that only one homology group of the poset is non trivial. We use this fact in

S ection4

to compute the character of this homology group as a representation ofSn.

1 Parking function posets

1.1 The poset of noncrossing 2-partitions

A set partitionpoff1,...,ngisnoncrossingif there exists noiSome properties of the parking function poset3 noncrossing partition (so that ¯wis a full cycle). The mapp7!K(p)defines an anti- automorphism ofNCn. For example,K(ff1,2g,f3g,f4,5gg) =ff1,3,4g,f2g,f5ggsince in the symetric group we have(12345)(12)(45) = (134). Definition 1.1(Edelman [4]).Anoncrossing 2-partitionoff1,...,ngis a triple(p,r,l) where: •pis a noncrossing partition off1,...,ng,ris a set partition off1,...,ng, •lis a bijection from (the blocks of)pto (those of)r, and8B2p, #l(B) =#B.

This set is denoted

2Pn. A partial order on2Pnis defined by(p0,r0,l0)(p,r,l)iff:

•p0is a refinement ofp,r0is a refinement ofr, if Uj i=1B0i=BwhereB0i2p0andB2p, thenUj i=1l0(B0i) =l(B). For example, such a triple(p,r,l)is as follows:p=ff1,5,6,8g,f2,3g,f4g,f7gg, randlare given byl(f1,5,6,8g) =f2,3,4,7g,l(f2,3g) =f5,8g,l(f4g) =f1g, l(f7g) =f6g. Another representation will be given inS ection1.2 (in particular ,see the example at the end).

The poset

2Pnis ranked, with rk((p,r,l)) =#p1. Let us mention a few other

properties following from the definition. Using the last condition above, we see that if (p,r,l)(p0,r0,l0),landrare uniquely determined byp0,r0,l0,p. It follows that the order ideal of

2Pncontaining all elements below(p,r,l)is isomorphic to an order

ideal in the noncrossing partition lattice, so it is isomorphic to a product of noncrossing partition latticesNCi1NCi2 (herei1,i2,... are the sizes of the blocks ofK(p)).

Similarly, one can prove that the order filter of

2Pncontaining all elements above(p,r,l)

is isomorphic to a product

2Pi12Pi2 (herei1,i2,... are the sizes of the blocks of

p). Moreover,2Pnhas one minimal element, andn! maximal elements.

Edelman proved in [

4 ] that thez-polynomial of this poset is given byZ2P n(k+1) = (nk+1)n1. In particular, settingk=1 we see that noncrossing 2-partitions and parking functions are equienumerous. Another result from [ 4 ] is that for 0kn1, the number of elements of rank`in2Pn, called the`thWhitney number of the second kind, is W `(2Pn) =`!n S

2(n,`+1), (1.1)

whereS2(n,k)are the Stirling numbers of the second kind. There is a natural action ofSnon set partitions off1,...,ng(see [2], for example). It extends to an action on

2Pnby:s(p,r,l) = (p,sr,sl), where inslwe identify

swith its action on set partitions. We will see below another way to think of this action, by defining a species of parking trees. It is straightforward to check that the action preserves the order relation of

2Pn, so that it extends to an action on chains of the poset,

and then on the homology.

4Bérénice Delcroix-Oger, Matthieu Josuat-Vergès, and Lucas Randazzo

1.2 The parking space

It turns out that this action can be identified with one defined in theparking space theory, introduced by Armstrong, Reiner and Rhoades in [ 1 ]. In some sense, Edelman"s poset is a precursor to this theory. To clarify this link, let us mention a few facts. Forp2NCn, we denote bySn(p)the set ofs2Snsuch thatsp=p. ThenSn(p) is aparabolic subgroup(it is conjugated to a Young subgroup). The quotientSn/Sn(p) is acted on bySn, by left multiplication. The character of this action is IndSn S n(p)(1), the trivial character ofSn(p)induced toSn. Under the Frobenius map, it is sent to the homogeneous symmetric function h l, wherelis the integer partition obtained by sorting block sizes ofp. Any pair(p,s)wherep2NCnands2Sn/Sn(p)can be identified with an element (p,r,l)22Pnby lettingr=sp, andlis defined as the action ofson blocks ofp. This identification is compatible with the action ofSn. It follows that the character of the action ofSnon2Pnis: p2NCnIndSn S n(p)(1). Therefore it coincides with thenoncrossing parking spacefrom [1].

In particular, the poset

2Pnappears implicitly in [8]. It follows from this reference that

the character ofSnacting on chainsf1 fkin2Pnis given by s7!(kn+1)z(s)1(1.2) wherez(s)is the number of cycles ofs. Following the above discussion, it is natural to see(p,r,l)22Pnas a pair(p,s) wheres2Snis a minimal length coset representative inSn/Sn(p), i.e. for each block B=fb1,b2,...g 2pwe haves(b1)1.3 The link with parking functions Definition 1.2.Aparking functionof lengthnis a wordw1wnof positive integers, such that for allkbetween 1 andn, we have #fi:wikg k. The symmetric group acts on parking functions as follows: fors2Sn,s(w1wn) =ws1(1)ws1(n).

Some properties of the parking function poset5

To each(p,r,l)22Pn, we associate a parking functionw1wnby the following condition: for eachB2p, we havewi=minBifi2l(B). It can be checked that this defines a bijection that is compatible with the action ofSn. It is worth making explicit what are the parking functions corresponding to(p,p,I) whereIis the identity map, because these are orbit representatives. It turns out that they are the parking functionsw1wnsuch that: i)wiifor alli, and: ii) they are lexicographically maximal among parking functions in the same orbit and satisfying i). Definition 1.3.Aparking treeon a setLis a rooted plane treeTsuch that: i) the internal vertices ofTare labelled with nonempty subsets ofL, ii) the above mentioned labels form a set partition ofL, iii) if an internal vertex hasidescendants then its label has cardinalityi. Thespecies of parking functions(orparking species), denotedPf, is the species which associates to any finite setVthe set of parking trees onV.

Note that a parking tree onLhas #Ledges.

Example 1.4.We represent below the parking trees onf1g,f1,2gandf1,2,3g:1, 12, 21,
12, 123,
123,
132,
231,
123,
132,
231,
123,
213,
312,
123,
132,
213,
231,
312,
321.

1325271

l (f1,7g,f3,5g,f2g,AE,f4g,AE,f6g) l1,763,542Parking trees onf1,...,ngare in bijection with parking functions in such a way that the action of S ncoincides on both sets. A parking function of lengthncan be rewritten as a (weak) set composi- tion(A1,...An)off1,...,ngsatisfyingåki=1jAij k for any 1kn, by lettingAibe the set of po- sitions of letteriin the parking function. Then, the vertices of the parking trees are given by the sets of the composition, andAiis the leftmost child ofAi1 ifAi16=AE, and plugged in the next available place to the right otherwise. The inverse bijection is given by reading nodes in a prefix order. See the picture on the right.

6Bérénice Delcroix-Oger, Matthieu Josuat-Vergès, and Lucas Randazzo

The covering relations on parking trees corresponding to those of the 2-partition poset are then given as follows. From a parking treeT, another oneUsuch thatTlU is obtained fromTby a sequence of operations: choose a v ertexAand partition it into two (non empty) setsA1andA2, deconcatenate the list of its (possibly empty) subtr eesinto thr eelists L1,L2andL3, such thatL1is non empty andL2andA2have the same cardinality, r emovefr omthe tr eethe elements of A2andL2 add the elements of A2to the rightmost leaf ofA1inL1 add L2as the list of children ofA2.

For the leftmost tree in

Figur e1

,A1=f1,5,6gandA2=f2g, the possible lists are(L1,L2,L3) = ((AE),(34),(AE,AE)),((AE,34),(AE),(AE))or((AE,34,AE),(AE),()), which gives each of the other trees in

Figur e1

2 Enumeration of chains of parking functions

Proposition 2.1.The speciesPfof parking trees satisfies: P f=å k1E k(Pf)k, (2.1) whereEk(V) =djVj=kK(whereKis our ground field) and the species of non-empty sets is

E1=åk1Ek.

This is obtained from the tree structure, and accordingly we can write an equation in terms of symmetric functions for the Frobenius image of the characters ofPf. The set ofweak k-chainsof parking functions onIis the set PFIkofk-tuples(a1,...,ak) whereaiare parking functions onIandaiai+1. The species which associates to any setIthe set PFIkis denoted byClk,t.

Theorem 2.2.We have:

C lk,t=å p1Cl,p k1,t tClk,t+1 p, whereCl,p k1,t(V) =djVj=pClk1,t(V)on any set V of size p. In terms of generating functions, this translates to: C lk,t=Clk1,t x tClk,t+1 (2.2) Some properties of the parking function poset71 2 5 6;;34

1 5 6;;234

1 5 6;342

1 5 6234

;Figure 1:A tree and some trees covering it.A 1?A2F 1F pF p+1F lF l+1F n......... A 1Fquotesdbs_dbs41.pdfusesText_41
[PDF] nf-p 91-120 (parcs de stationnement privés)

[PDF] définition intérêt

[PDF] mission d'intérêt général service public

[PDF] concept géographique définition

[PDF] concepts géographie

[PDF] dictionnaire géographique universel

[PDF] méthode aba définition

[PDF] règle de bioche intégrale pdf

[PDF] somme de riemann exercice corrigé

[PDF] règle de bioche exercices corrigés

[PDF] somme de darboux exercice corrigé pdf

[PDF] intégrale de riemann exercice corrigé

[PDF] calcul puissance absorbée moteur triphasé

[PDF] tp synthèse de l'aspirine seconde

[PDF] mise en garde aspirine