[PDF] [PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Première ES - Suites arithmétiques

Suites arithmétiques. I) Définition: Soit un nombre un entier naturel. Soit une suite. On dit qu'elle est arithmétique si partant du. TERME INITIAL.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



SUITES ARITHMETIQUES – SUITES GEOMETRIQUES

1ère GE Ch7 Suites arithmétiques – Suites géométriques Soit ( un ) une suite arithmétique définie par son terme initial u0 et sa raison r. On a alors :.



RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES

appelé la raison de la suite. Caractérisation par une formule explicite un = u0 + n × r u0 étant le terme initial de la suite. un = u0 × q.



Suites et croissance - Lycée dAdultes

u0 correspondra au terme initial soit à la date d Cette suite est donc une suite arithmétique de premier terme 5 et de raison r = 3. Paul Milan.



Corrigé du Contrôle Continu no 1

Exercice 2. Soit (un)n?N la suite arithmétique telle que u6 = 224 et u14 = 112. 1. Déterminer la raison r puis le terme initial u0 de (un)n?N.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Ch. VIII — Suites numériques I Généralités II Suites arithmétiques

Son terme initial est u0 = 0. Ì ÓÖ Ñ (Forme explicite d'une suite arithmétique). Soit (un) une suite arithmétique de raison r 



Suites arithmétiques Suites géométriques

Un capital (Cn) est placé à intérêts fixes de 4% le capital initial étant Soit (un) la suite arithmétique de premier terme u0 = 7 et de raison (?2).



[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Propriété : (un) est une suite arithmétique de raison r et de premier terme u0 Pour tout entier naturel n on a : u n = u 0 + nr Démonstration 



[PDF] Première S - Suites arithmétiques - Parfenoff org

Cet algorithme permet d'obtenir les premiers termes d'une suite arithmétique • Déclaration des variables : i n entiers ; u r réels ;



[PDF] 1ère L Cours sur les suites arithmétiquespdf

Pour définir une suite arithmétique il faut donner le premier terme et la raison de la suite Parfois le premier terme de la suite est 1 u au lieu de 0 u ; 



[PDF] Suites arithmétiques

On appelle a la raison de la suite et le terme 0 u est appelé terme initial ou premier terme ? Théorème : Si( )n u est une suite arithmétique de raison a 



[PDF] Ch VIII — Suites numériques I Généralités II Suites arithmétiques

Son terme initial est u0 = 0 Ì ÓÖ Ñ (Forme explicite d'une suite arithmétique) Soit (un) une suite arithmétique de raison r 



[PDF] Suites arithmétiques et géométriques

On a une suite arithmétique de raison r = ?400 et de premier terme u0 = 38400 2 Pour tout n un = 38400?400n 3 u6 = 38400?6×400= 36000



[PDF] Chapitre 2: Suites arithmétiques et suites géométriques

Exemple : Les trois premiers termes d'une suite arithmétique sont : 20 165 et 13 Calculer le quinzième terme Exercice 2 4 : Calculer le cinquième terme 



[PDF] I Suites arithmétiques II Suites géométriques III Suites arithmético

Une suite arithmétique est donc définie par sa raison r et son premier terme u0 Démonstration Récurrence ou somme téléscopique Somme des premiers termes



[PDF] SUITES NUMERIQUES

Ces formules permettent de calculer n'importe quel terme d'une suite géométrique ou bien encore sa raison Exemple : (un) est une suite géométrique de raison q 



[PDF] SUITES NUMERIQUES - Pierre Lux

On dit que u n est le terme général de la suite ( u n ) le terme de rang n ou le terme d'indice n u 0 est le terme initial de la suite ( u n ) • ( u n ) 

  • Comment trouver le terme initial d'une suite arithmétique ?

    Le terme général d'une suite arithmétique (Un) est donné par la formule suivante: Un = Up + (n-p)×r (où Up est le terme initial). Cas particulier si U0 est le terme initial, alors Un=U0+nr. Toute suite arithmétique est caractérisée par sa raison r et son premier terme.
  • Comment trouver le premier terme d'une suite ?

    On considère une suite (un) définie pour tout entier naturel n par un+1=f(un) où f est une fonction donnée. De plus, le premier terme u0 est également connu. Si l'exercice demande de calculer u1, on peut se servir de la relation un+1=f(un) en rempla?nt n par 0.
  • Comment savoir si le premier terme d'une suite est u0 ou u1 ?

    Théorème 1 Le terme de rang n d'une suite arithmétique u de premier terme u1 et de raison r est : un = u1 + (n ? 1)r Si le premier terme est u0 alors le terme de rang n est : un = u0 + nr. Exemple : Soit la suite arithmétique de premier terme u1 = 12 et de raison 3.
  • On dit qu'une suite (vn) est une suite géométrique de raison q, lorsqu'on donne son premier terme v0 et chaque terme s'obtient en multipliant le terme précédent par q. Autrement dit : v0?? est donné et pour tout entier naturel n : vn+1=vn×q=qvn .
1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u 0 = 5, u 1 = 10, u 2 = 20, u 3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La est donc définie par : .

Vidéo https://youtu.be/WTmdtbQpa0c

Définition : Une suite (u

n ) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : .

Le nombre q est appelé raison de la suite.

Méthode : Démontrer si une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (u

n ) définie par : est-elle géométrique ? Le rapport entre un terme et son précédent reste constant et égal à 5. (u n ) est une suite géométrique de raison 5 et de premier terme .

Exemple concret :

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04.

On a ainsi :

De manière générale : avec

On peut également exprimer u

n en fonction de n :

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme u 0

Pour tout entier naturel n, on a : .

0 1 5 2 nn u uu 1nn uqu =´35 n n u=´ 11 1 1 355
55
355
nn nn n nn n u u u 0 =3×5 0 =3 1

1,04500520u=´=

2

1,04520540,80u=´=

3

1,04540,80562,432 u=´=

1 1,04 nn uu 0

500u=5001, 04

n n u=´ u n =u 0 ´q n 5

Démonstration :

La suite géométrique (u

n ) de raison q et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite géométrique

Vidéo https://youtu.be/wUfleWpRr10

Considérons la suite géométrique (u

n ) tel que et . Déterminer la raison et le premier terme de la suite (u n

Les termes de la suite sont de la forme .

Ainsi et

Ainsi : et donc .

On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui

élevé au cube donne 64.

Ainsi

Comme , on a : et donc : .

2) Variations

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme non nul u 0

Pour :

- Si q > 1 alors la suite (u n ) est croissante. - Si 0 < q < 1 alors la suite (u n ) est décroissante.

Pour :

- Si q > 1 alors la suite (u n ) est décroissante. - Si 0 < q < 1 alors la suite (u n ) est croissante.

Démonstration dans le cas où u

0 > 0 : - Si q > 1 alors et la suite (u n ) est croissante. - Si 0 < q < 1 alors et la suite (u n ) est décroissante. u n+1quotesdbs_dbs41.pdfusesText_41
[PDF] ambiance urbaine définition

[PDF] ambiances architecturales et urbaines

[PDF] ambiance urbaine pdf

[PDF] ambiances urbaines

[PDF] ambiance architecturale définition

[PDF] ambiance en architecture

[PDF] les ambiances architecturales

[PDF] exemple d'ambiance

[PDF] mythes et héros italien

[PDF] formule de wilson exercice corrigé

[PDF] formule de wilson sous excel

[PDF] exemple de heros italien

[PDF] débit volumique unité

[PDF] débit volumique formule

[PDF] comment interpreter la moyenne en statistique