[PDF] [PDF] Théorème de la bijection : exemples de rédaction - Arnaud Jobin





Previous PDF Next PDF



Théorème de la bijection : exemples de rédaction

Montrer que l'équation f(x) = admet une unique solution dans . . . » ... D'après le théorème de la bijection la fonction f réalise une bijection de.



Notion de fonction. Bijections

f est strictement monotone sur I alors f réalise une bijection de I sur J = f (I). Exemple. Démontrer que l'application f : R+?.



Corrigé du TD no 11

Montrer que f = g. donc d'après le théorème de la bijection elle réalise une bijection entre l'intervalle ]0 1[ et l'intervalle. ]f(0)



Logique ensembles et applications

Montrer que f réalise une bijection de D = {z ? C/



Bijections et fonctions réciproques usuelles

Reprendre la question ci-dessus avec la restriction de f à l'intervalle ]??; ?1. 2[ . Exercice 8 : [corrigé]. 1. Montrer que sh réalise une bijection de 



Bijections et continuité

On dit que f est une application injective si tous les éléments de F admettent au plus un antécédent que f(x) = f(x ). Il nous faut montrer que x = x .



DM no2

Démontrer que l'application f réalise une bijection de l'intervalle ] ? ??1] sur l'inter- valle [?



Exercice bijection

Montrer que la fonction sinus réalise une bijection de [? ?. 2. ; ?. 2 ] sur [?1; 1]. 2. Soit arcsin la fonction réciproque de la fonction sinus définie 



DS n 4 - Mathématiques PCSI

10 déc. 2016 Justifier que f est dérivable sur R{2} est calculer sa dérivée. ... Montrer que fab



TD no 4 — Propriétés des fonctions continues

f(x) = 1. 1 + x2. 1. Montrer que f réalise une bijection de [0 +?[ sur un intervalle I que l'on précisera. 2. Quelles sont les propriétés de f?1 : I 



[PDF] Théorème de la bijection : exemples de rédaction - Arnaud Jobin

Le but de cette fiche est de faire un point sur le théorème de la bijection Après un retour sur l'énoncé et sa démonstration on illustrera l'utilisation



[PDF] Ensembles et applications - Exo7 - Cours de mathématiques

Si f est bijective alors g est aussi bijective car g ? f = idE et f ? g = idF et on applique ce que l'on vient de démontrer avec g à la place de f Ainsi g? 



[PDF] Corrigé du TD no 11

Montrer que f = g Réponse : Rappelons d'abord le résultat suivant : tout nombre réel est limite d'une suite de nombres rationnels autrement dit 



[PDF] Bijections et continuité

Si f est une fonction injective de E dans F alors f est une bijection de E dans f(E) Si f est strictement monotone sur un intervalle I de R alors f est une 





[PDF] TVI et TB

Théorème des valeurs intermédiaires et théorème de la bijection : le match Hypothèses : I est un intervalle et f est une fonction de I dans R



[PDF] Notion de fonction Bijections

f : I ? R est continue sur I ; • f est strictement monotone sur I alors f réalise une bijection de I sur J = f (I) Exemple Démontrer que l'application



Théorème de la bijection - Wikipédia

En analyse réelle le théorème de la bijection est un corollaire du théorème des valeurs intermédiaires affirmant qu'une fonction continue et strictement 



[PDF] 1 Bijection et fonctions réciproques

Démontrer que la fonction f : x ?? arctan 2x + arctan x réalise une bijection de R sur un intervalle à préciser En déduire que cette équation admet une 

  • Comment justifier qu'une fonction réalisé une bijection ?

    L'application f est bijective si et seulement si il existe une application g : F ? E telle que f ? g = idF et g ? f = idE. 2. Si f est bijective alors l'application g est unique et elle aussi est bijective. L'application g s'appelle la bijection réciproque de f et est notée f ?1.
  • Comment montrer qu'une fonction réalisé une bijection sur un intervalle ?

    Théorème de la bijection entre segments — Si f est une fonction continue et strictement monotone sur un intervalle [a, b] et à valeurs réelles, alors elle constitue une bijection entre [a, b] et l'intervalle fermé dont les bornes sont f(a) et f(b).
  • Quand une fonction réalisé une bijection ?

    Une fonction f : X ? Y est dite bijective ou est une bijection si pour tout y dans l'ensemble d'arrivée Y il existe un et un seul x dans l'ensemble de définition X tel que f ( x ) = y . On dit encore dans ce cas que tout. élément y de Y admet un unique antécédent x (par f ).
  • f est surjective si et seulement si pour tout élément y de F, l'équation f (x) = y a au moins une solution dans E. ?x, y ? I x < y =? f (y) < f (x). Soient I un intervalle de R et f : I ? R une fonction strictement croissante (ou strictement décroissante). Alors la fonction f est injective.
ECE1-B2015-2016Théorème de la bijection : exemples de rédaction Le but de cette fiche est de faire un point sur le théorème de la bijection. Après un retour sur l"énoncé et sa démonstration, on illustrera l"utilisation de ce théorème en agrégeant les questions rencontrées lors des DS de l"année

2013-2014. Cela devrait vous convaincre, je l"espère, qu"il n"est pas envisa-

geable de perdre des points sur ces questions (toujours les mêmes!).

I. L"énoncé général du théorème

Théorème 1.Théorème de la bijection

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

croissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement croissante surf(I).1)fcontinue surI,

2)fstrictement

décroissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement décroissante surf(I).Démonstration.(Cas où fest strictement croissante) a)f(I)est un intervalle car image d"un intervalle par une fonction continue (c"est une des conséquences du TVI). b)La fonctionf:I!f(I)est surjective puisque son ensemble d"arrivée coïncide avec son image. De plus, commefest strictement croissante, elle est injective.

La fonctionfest donc bijective deIsurf(I).

c)Montrons quef1:f(I)!Iest aussi strictement monotone. Il s"agit de montrer :8(u1;u2)2(f(I))2; u1< u2)f1(u1)< f1(u2).

Soientu1etu2deux éléments def(I). Ainsi :

il existex12Itel queu1=f(x1), il existex22Itel queu2=f(x2). D"oùf1(u1) =f1(f(x1)) =x1etf1(u2) =f1(f(x2)) =x2. L"implication à montrer s"écrit donc :f(x1)< f(x2))x1< x2. On la démontre par contraposée : six1>x2alorsf(x1)>f(x2)carfest crois- sante. Le caractère continu def1, plus technique, n"est pas démontré ici.Remarque Le pointa)est une conséquence du TVI et est essentiel pour démontrer le caractère continu def1. Le théorème de la bijection est donc souvent présenté comme un corollaire du TVI. Toutefois, citer le TVI au lieu du théorème de la bijection sera considéré comme une erreur de rédaction : les hypothèses et résultats du théorème de la bijection sont plus précis. La démonstration du pointc)fait apparaître la propriété suivante. Pour toutx1,x2,éléments deDf:f(x1)< f()< f(x2)f

1strictement croissante==========)x1< < x2Évidemment, cette propriété est aussi vérifiée pour des inégalités larges.

Cette propriété donne aussi souvent lieu à des questions dans les concours.1 ECE1-B2015-2016II. L"énoncé adapté aux questions

Théorème 2.

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

monotone surI.)Alors pour touty2f(I), l"équationy=f(x)admet uneuniquesolutionx2I.Démonstration.

C"est un corollaire direct du théorème

1 La fonctionf:I!f(I)est bijective. On en déduit que tout élément y2f(I)admet un unique antécédentxdans l"intervalleI.Remarque Les questions nécessitant ce théorème sont facilement repérables : " Montrer qu"il existe ununique2:::tel que ... » " Montrer que l"équationf(x) =:::admet uneuniquesolution dans ... » La rédaction correcte d"une telle question demande de la rigueur. Une erreur classique et lourdement pénalisée consiste à oublier de préciser les intervalles considérés (Ietf(I)). Le théorème suivant permet de préciser la nature de l"intervallef(I).

Théorème 3.

SoitIun intervalle d"extrémitésaetb(chacune pouvant être infinie). Soitf:I!Rune fonction continue et strictement monotone surI. a)Alorsf(I)est un intervalle d"extrémitéslimx!af(x)etlimx!bf(x). b)De plus, les intervallesIetf(I)sont de même nature : fermés (comme[1;2],[1;+1[,] 1;2]), ouverts (comme]1;2[,]1;+1[,] 1;2[), ou semi-ouverts (comme]1;2],[1;2[).Tableau récapitulatif. Le tableau suivant permet de faire un point sur les différents types d"inter- valles rencontrés.Nature de l"intervallef(I)ICasfstrictement croissante surICasfstrictement décroissante surI[a;b][f(a);f(b)][f(b);f(a)][a;b[[f(a);limx!bf(x)[]lim x!bf(x);f(a)]]a;b]]lim x!af(x);f(b)][f(b);limx!af(x)[]a;b[]lim x!af(x);limx!bf(x)[]lim x!bf(x);limx!af(x)[Remarque Les tableaux de variation constituent un outil de base dans la rédaction des questions s"appuyant sur le théorème de la bijection. Une fois établi, un tel tableau permet la lecture rapide : des intervallesIde stricte monotonie def, des intervallesf(I)correspondants. Nous considérerons dans les illustrations suivantes que les tableaux de varia- tions sont déjà réalisés. (en cas de doute, se référer aux corrigés précédemment fournis)2

ECE1-B2015-2016III. Illustration sur des exemples

III.1. Énoncé du DS1

Exercice 1

On considère la fonctionfdéfinie par :f(x) =x+ 1 +x1 + lnxx 2. Cette fonction estC1surDf=]0;+1[et son tableau de variation (com- plété avec les informations prouvées ci-dessous) est :x

Signe deg(x)Signe def0(x)Variations def0+1+

1+1+11

2 <0 01 2 a.Montrer que l"équationf(x) = 0admet une unique solution surDf.

On la notera.

b.Montrer que :12 < <1.

Démonstration.

a.On sait que :

1)fest continue sur]0;+1[,

2)fest strictement croissante sur]0;+1[.

De plus,f(]0;+1[) = ] limx!0+f(x);limx!+1f(x)[ = ] 1;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de]0;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationf(x) = 0admet une unique solutionx2]0;+1[.b.On remarque que : f12 =12

4ln2<0,

f() = 0, f(1) = 2>0.

Ainsi on a :f12

< f()< f(1). Or, d"après le théorème de la bijection,f1:] 1;+1[!]0;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :12 < <1.3

ECE1-B2015-2016III.2. Énoncé du DS5

Exercice 2

On considère la fonctionfdéfinie par :f(x) =(x+ 1)ln(x+ 1)x En posantf(0) = 1, on prolonge la fonctionfen une fonctionC1sur D f= [1;+1[(faire l"étude!). Son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def0(x)Variations def10+1++

00+1+13

<24 >2 2 a.Démontrer qu"il existe un unique2[1;+1[tel quef() = 2. b.Montrer que :3< <4. (on donneln20;69etln51;61)

Démonstration.

a.On sait que :

1)fest continue sur[1;+1[,

2)fest strictement croissante sur[1;+1[.

De plus,f([1;+1[) = [f(1);limx!+1f(x)[ = [0;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de[1;+1[dans[0;+1[.

Or22[0;+1[. On en déduit que l"équationf(x) = 2admet une unique solutionx2[1;+1[.b.On remarque que : f(3) =4ln(4)3 =4ln(22)3 =8ln(2)3 <83

0;7 =5;63

<2, f() = 2, f(4) =5ln(5)4 >54

1;6 = 2.

Ainsi on a :f(3)< f()< f(4).

Or, d"après le théorème de la bijection,f1:[0;+1[![1;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :3< <4.Remarque Le fait qu"une seule flèche (et pas 2!) soit dessinée dans le tableau de variation ne doit pas surprendre. En effet, on rappelle le résultat suivant (cfchapitre " Dérivabilité ») :f

0>0surIetf0ne s"annule qu"en

un nombre fini de points)fstrictement croissante surI4

ECE1-B2015-2016III.3. Énoncés du DS6

III.3.a) Énoncé de l"exercice 2

Exercice 3

Pour tout entier naturel non nuln, on définit la fonctionfnpar :

8x2R; fn(x) =11 +ex+n x

Cette fonction estC1surDf=Ret son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def00n(x)Variations

def0nSigne def0n(x)Variations defn10+10+ nn 14 +n 14 +nnn

11+1+1

1n <0u n00 >0a.Montrer que l"équationfn(x) = 0possède une seule solution surR.

On noteuncette solution.

b.Montrer qu"on a :8n2N;1n < un<0.

Démonstration.

a.Soitn2N. On sait que :

1)fnest continue sur] 1;+1[,

2)fnest strictement croissante sur] 1;+1[.De plus,fn(] 1;+1[) = ] limx!1fn(x);limx!+1fn(x)[ = ]n;+1[.

D"après le théorème de la bijection, la fonctionfnréalise une bijection de] 1;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationfn(x) = 0admet une unique solutionx2] 1;+1[. b.On remarque que : fn1n =11 +e1n

1 =e1n

1 +e1n

<0, fn(un) = 0, fn(0) =12 >0.

Ainsi on a :fn1n

< f n(un)< fn(0). Or, d"après le théorème de la bijection,f1n:] 1;+1[!] 1;+1[ est strictement croissante. En appliquantf1nà l"inégalité précédente, on obtient :1n < un<0.5 ECE1-B2015-2016III.3.b) Énoncés de l"exercice 3

Exercice 4

Soita >0. On considère la fonctionfdéfinie par :f(x) = exp[a(x1)].

A)Casoùa= 1.

Montrer que l"équationf(x) =xadmet une unique solution surR.

B)Casoùa >1.

a.Montrer que l"équationf(x) =xadmet deux solutions surR.

On noterar(a)la plus petite.

b.Montrer que :0< r(a)<1.Technique de démonstration. On souhaite trouver ici les solutions de l"équationf(x) =x. On ne peut appliquer directement le théorème de la bijection àf. On considère alors la fonctiong:x7!f(x)xde sorte que : f(x) =x,g(x) = 0Démonstration.On noteg:x7!f(x)x. A)Casoùa= 1. On a alors le tableau de variation suivant.x

Signe deg0(x)Variations deg11+10+

+1+100+1+1Ainsi,g(x) = 0admetx= 1comme unique solution. Il en est de même de l"équationf(x) =x.B)Casoùa >1. On a le tableau de variation suivant.x g

0(x)g11lnaa+10+

+1+1g(1lnaa )g(1lnaa )+1+10 e ar(a)01 0

On remarque que :

g 1lnaa =ea(lnaa 1lnaa =1a

1 +lnaa

<0 (cf corrigé du DS) a.Détaillons les éléments de ce tableau de variation.

Surl"intervalle] 1;1lnaa

On sait que :

1)gest continue sur] 1;1lnaa

2)gest strictement décroissante sur] 1;1lnaa

De plus :g(]1;1lnaa

[) = ]g(1lnaa );limx!1g(x)[ = ]g(1lnaa );+1[. D"après le théorème de la bijection, la fonctiongréalise une bijection de] 1;1lnaa [dans]g(1lnaa );+1[.

Or02]g(1lnaa

);+1[. On en déduit que l"équationg(x) = 0admet une unique solutionx2] 1;1lnaa L"équationf(x) =xadmet donc une unique solution sur]1;1lnaa [.6

ECE1-B2015-2016Surl"intervalle]1lnaa

;+1[.

On sait que :

1)gest continue sur]1lnaa

;+1[,

2)gest strictement croissante sur]1lnaa

;+1[.

De plus :g(]1lnaa

;+1[) = ]g(1lnaa );limx!+1g(x)[ = ]g(1lnaa );+1[. D"après le théorème de la bijection, la fonctiongréalise une bijection de]1lnaa ;+1[dans]g(1lnaa );+1[.

Or02]g(1lnaa

);+1[. On en déduit que l"équationg(x) = 0admet une unique solutionx2]1lnaa ;+1[. L"équationf(x) =xadmet donc une unique solution sur]1lnaa ;+1[. b.Notons tout d"abord que la plus petite solution def(x) =x, notéer(a) est dans l"intervalle]1;1lnaa [. On en déduit quer(a)<1lnaa <1.

D"autre part, on a :

g(0) =ea>0, g(r(a)) = 0.

Ainsi on a :g(r(a))< g(0).

Or, d"après le théorème de la bijection, la fonction g

1:]g(1lnaa

);+1[!] 1;1lnaa [est strictement décroissante. En appliquantg1à l"inégalité précédente, on obtient :0< r(a).

On en conclut :0< r(a)<1.Exercice 5

On considère la fonctionfdéfinie, pourx2[0;1]par :(x) =xex. Cette fonction estC1sur[0;1]et son tableau de variation est :x

Signe de0(x)Variations de01

00e 1e

1a.Montrer queréalise une bijection de[0;1]sur[0;1e

b.Montrer que sa fonction réciproque1est continue et strictement crois- sante sur[0;1e c.Dresser le tableau de variation de1.

Démonstration.

a.On sait que :

1)est continue sur[0;1],

2)est strictement croissante sur[0;1].

De plus,([0;1]) = [(0);(1)] = [0;1e

D"après le théorème de la bijection, la fonctionréalise une bijection de[0;1]dans[0;1e b.De plus, sa fonction réciproque1:[0;1e ]![0;1]est continue et strictement croissante sur[0;1e c.D"où le tableau de variation :x

Variations de10e

10011
7 ECE1-B2015-2016III.3.c) Énoncé du problème A

Exercice 6

On considère la fonctionfdéfinie par :f(x) =x3+ 5x1. Cette fonction polynomiale estC1surDf=Ret son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def0(x)Variations def1+1+

11+1+10

1 01 2 13 8 a.Montrer que l"équationx3+ 5x1 = 0admet une unique solution dans

R. On notecette solution.

b.Établir que :0< <12

Démonstration.

a.On sait que :

1)fest continue sur] 1;+1[,

2)fest strictement croissante sur] 1;+1[.

De plus,f(] 1;+1[) = ] limx!1f(x);limx!+1f(x)[ = ] 1;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de] 1;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationf(x) = 0admet une unique solutionx2] 1;+1[.b.On remarque que : f(0) =1<0, f() = 0, f12 =138 >0.

Ainsi on a :f(0)< f()< f12

Or, d"après le théorème de la bijection,f1:] 1;+1[!]0;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :0< <12 .8quotesdbs_dbs22.pdfusesText_28
[PDF] baguier virtuel sans imprimer

[PDF] baguier gratuit

[PDF] controle francais 4eme poesie lyrique

[PDF] évaluation français entrée 4ème collège

[PDF] bilan exemple

[PDF] bilan définition

[PDF] le bilan comptable cours

[PDF] bilan ulis

[PDF] rapport d'activité ulis

[PDF] comment rédiger un bilan pédagogique

[PDF] rapport d'activité ulis collège

[PDF] comment faire un bilan pédagogique

[PDF] modèle de bilan pédagogique

[PDF] evaluation diagnostique ulis collège

[PDF] recommandation has autisme 2016