[PDF] Mathématiques terminale S Mathématiques. Terminale S. Tout





Previous PDF Next PDF



Formulaire de mathématiques terminale S

3. on déduit que sur un certain intervalle A ?B < 0 =? A < B. ¼ Mes méthodes et formules (à compléter toi-même). Mathieu Pons mathete.net. FORMULAIRE TS 



formulaire-terminale-s.pdf

BACCALAURÉAT SÉRIE S. ENSEIGNEMENT OBLIGATOIRE ET ENSEIGNEMENT DE SPÉCIALITÉ. FORMULAIRE DE MATHÉMATIQUES. III. ALGÈBRE. A. NOMBRES COMPLEXES.



Formulaires de mathématiques

4 nov. 1998 Vous trouverez annexés à la présente note de service les formulaires de mathémati- ques concernant les classes terminales préparant aux ...



formulaire.pdf

Dans tout ce formulaire on ne parle pas du domaine de définition de la formule : par exemple ?a sous-entend a ? 0 n ? N?



MATH Tle D OK 2

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans est dite arithmétique s'il existe un réel tel que tout ??.



PROBABILITÉS

Probabilités – Terminale S. 5. Par spécialité : Mathématique s. Sciences. Physiques. SVT. 40%. 25%. 35%. Sexe de l'élève selon la spécialité :.



ANNALES DE MATHEMATIQUES

ANNALES DE MATHEMATIQUES. TERMINALE S Annales du baccalauréat S 2000 ... (b) La formule du cours permet de trouver que l'espérance mathématique de.



Terminale D

Des élèves d'une classe de terminale s'interroge sur ce qu'ils viennent de découvrir à l'exposition sur les journées mathématiques organisée par la Société 



Mathématiques terminale S

Mathématiques. Terminale S. Tout ce qu'il faut savoir. Paul Milan Pour les fonctions usuelles on utilise directement les formules.



Trigonométrie circulaire

La mesure principale d'un angle de mesure ?. 17?. 3 est ?. 3 . c Jean-Louis Rouget 2007. Tous droits réservés. 2 http ://www.maths-france 



[PDF] formulaire-terminale-spdf - Mathovore

BACCALAURÉAT SÉRIE S ENSEIGNEMENT OBLIGATOIRE ET ENSEIGNEMENT DE SPÉCIALITÉ FORMULAIRE DE MATHÉMATIQUES I COMBINATOIRE - DÉNOMBREMENTS



[PDF] Formulaire de mathématiques terminale S - mathetenet

¼ Pour établir une inégalité du type A < B (ou A > B ) 1 on calcule la différence A ?B et on la met sous la forme d'un produit ou d'un quotient



[PDF] Formulaires de mathématiques

12 nov 1998 · Vous trouverez annexés à la présente note de service les formulaires de mathémati- ques concernant les classes terminales préparant aux 



Formulaire maths Terminale S - NATH & MATIQUES

28 août 2017 · Formulaire maths Terminale S · Suites · Limites et continuité · Dérivation et intégration · Exponentielles et logarithmes · Nombres complexes 



[PDF] FORMULAIRE DE MATHÉMATIQUES - Optimal Sup Spé

Ce formulaire est un outil pour vous permettre de réviser vos définitions vos formules ainsi que les théorèmes les plus importants du cours de première 



[PDF] Mathématiques terminale S - Lycée dAdultes

Pour les fonctions usuelles on utilise directement les formules Pour autres fonctions il faut d'abord identifier la forme qui ressemble le plus à la fonction 



[PDF] Terminale S - Melusine

Fiches de Mathématiques que f (formule explicite) ? Si (un) est majorée s'il existe un réel M tel que pour tout entier n un? M ? La suite (un)



[PDF] Formulaire des mathematiques

vement par a6; car le signe 3 correspond au signe •< ou > ou mieux à ^ ou > de l'Alg-èbre selon que dans la classe on considère le





Formulaires de mathématiques physique et chimie pour Terminale S

2 jan 2011 · M'étant « amusé » pendant les vacances à préparer[1] des fiches de révisions en mathématiques et physique/chimie pour un élève de terminale 

:

Mathématiques

Terminale S

Tout ce qu"il faut savoir

Paul Milan

Table des matières

1 Rappels sur les suites4

1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Programmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Suites arithmétiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6 Suites géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Raisonnement par récurrence. Limite d"une suite 6

1 Raisonnement par récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . 6

2 Limite d"une suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

4 Convergence d"une suite monotone . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Étude d"une fonction (chap. 3 à 6)10

1 Limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Dérivabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Fonctions exponentielle et logarithme . . . . . . . . . . . . . . . . . . .. . . . 14

7 Les fonctions sinus et cosinus18

1 Équation trigonométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Signe des fonctions sinus et cosinus . . . . . . . . . . . . . . . . . . . . . .. . 18

3 Propriétés des fonctions sinus et cosinus . . . . . . . . . . . . . . . . . .. . . . 18

4 Dérivées et limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19

5 Variations et représentations . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 19

6 Fonctions sin(ax+b) et cos(ax+b) . . . . . . . . . . . . . . . . . . . . . . . .. . 19

7 Application aux ondes progressives . . . . . . . . . . . . . . . . . . . . .. . . 20

8 Intégrales et primitives22

1 Aire sous une courbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Calcul de primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Propriétés de l"intégrale . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 24

9 Les nombres complexes26

1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Conjugué . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Second degré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Forme trigonométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Vecteur, alignement et orthogonalité . . . . . . . . . . . . . . . . . . . . .. . . 27

2

TABLE DES MATIÈRES

10 Probabilités conditionnelles. Loi binomiale28

1 Probabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Probabilités conditionnelles . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 29

3 Indépendance de deux événements . . . . . . . . . . . . . . . . . . . . . . . .. 30

4 Loi binomiale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Lois à densité. Loi normale32

1 Lois à densité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 La loi normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 Statistiques36

1 Intervalle de fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Prise de décision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

3 Estimation - Intervalle de confiance . . . . . . . . . . . . . . . . . . . . . .. . . 36

13 Géométrie dans l"espace. Vecteurs et produit scalaire. 38

1 Relations entre droites et plans . . . . . . . . . . . . . . . . . . . . . . . . .. . 38

2 Parallélisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

3 Orthogonalité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Vecteurs dans l"espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

5 Coplanarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Dans un repère . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Représentation paramétrique d"une droite et d"un plan . . . . . . . . . .. . . 40

8 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

9 Équation cartésienne d"un plan . . . . . . . . . . . . . . . . . . . . . . . . . . .41

10 Section d"un cube par un plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Volume d"une pyramide et d"une sphère . . . . . . . . . . . . . . . . . . . .. . 42

3

Chapitre 1

Rappels sur les suites

1 Définition

On peut définir une suite(un):

•De façon explicite :un=f(n).

•De façon récurrente :- à un terme :u0etun+1=f(un) - à deux termes :u0etu1etun+2=f(un+1,un)

•Par une somme de termes :un=n∑

k=0T n

2 Variation

Pour connaître les variations d"une suite(un), on étudie :

•Le signe de :un+1-un

•Si les termes sont strictement positifs positifs, on peut comparerde rapport :un+1unà 1.

•Si la suite est définie de façon explicite, on peut aussi étudier le signe de la dérivée de la

fonction associée.

3 Visualisation

Pour visualiser une suite définie par récurrence, on trace, la fonctionfet la droitey=xqui permet de reporter les termes sur l"axe des abscisses. 0.5 0.5

Ou0u1u2u3u

4u 1u 2u 3u 4 y=x Cf

4 Programmation

Deux petits programmes pour programmer un terme particulier ou la liste des premiers termes d"une suite définie par récurrence : (on rentre la fonctionfà part,A=u0) 4

CHAPITRE 1. RAPPELS SUR LES SUITES

Variables

A,N,I,U,f(fonction)

Algorithme

LireA,N

A→U

PourIvariant de 1 àN

f(U)→U

FinPour

AfficherU

Variables

A,N,I,U,L1(liste),f(fonction)

Algorithme

LireA,N

A→U

ListeL1remis à 0

U→L1(1)

PourIvariant de 1 àN

f(U)→U

U→L1(I+1)

FinPour

AfficherL1

5 Suites arithmétiques

Définition :un+1=un+ret un premier terme.rest la raison

Propriété :un+1-un=Cte?n?N

Terme général :un=u0+nrouun=up+ (n-p)r

Somme des termes :1+2+3+···+n=n(n+1)

2 S n=u0+u1+···+un= (n+1)×u0+un

2=Nbre de termes×Σtermes extrèmes2

6 Suites géométriques

Définition :un+1=q×unet un premier terme.qest la raison

Propriété :

un+1 un=Cte?n?N

Terme général :un=u0×qnouun=up×qn-p

Somme des termes :1+q+q2+···+qn=1-qn+1

1-q S n=u0+u1+···+un=u0×1-qn+1

1-q=1erterme×1-qNbre termes1-q

5

Chapitre 2

Raisonnement par récurrence.

Limite d"une suite

1 Raisonnement par récurrence

1.1 Axiome de récurrence

Définition 1 :Soit une propriétéPdéfinie surN. Si : •la propriété estinitialiséeà partir d"un certain rangn0

•la propriété esthéréditaireà partir d"un certain rangn0(c"est à dire que pour toutn?n0

alorsP(n)? P(n+1) Alors : la propriété est vraie à partir du rangn0

1.2 Exemple

Démontrer que, pour tout entier naturel, la suite(un)est définie par : u

0=1 etun+1=⎷

2+unest telle que 0 Initialisation: on au0=1 donc 0La fonctionfdéfinie parf(x) =⎷

x+2 est croissante car composée de deux fonctions croissantes

0

2

La propositionP(n)est héréditaire.

Conclusion :par initialisation et hérédité, la propositionP(n)est vraie pour toutn.

2 Limite d"une suite

Définition 2 :On dit que la suite(un)a pour limite?si, et seulement si, tout intervalle ouvert contenant?contient tous les termes de la suite à partir d"un certain rang.

On note alors : lim

n→+∞un=?et l"on dit que la suiteconvergevers? On dit que la suite(un)a pour limite+∞(resp.-∞) si, et seulement si, tout intervalle ]A;+∞[(resp.]-∞;B[) contient tous les termes de la suite à partir d"un certain rang.

On note alors : lim

n→+∞un= +∞resp. limn→+∞un=-∞ On dit que la suitedivergevers+∞(resp.-∞) 6 CHAPITRE 2. RAISONNEMENT PAR RÉCURRENCE. LIMITE D"UNE SUITE Soit trois suites(un),(vn)et(wn). Si à partir d"un certain rang, on a :

Théorème d"encadrement ou "des gendarmes"

v n?un?wnet si limn→+∞vn=limn→+∞wn=?alors limn→+∞un=?

Théorème de comparaison

•un?vnet si limn→+∞vn= +∞alors limn→+∞un= +∞ •un?wnet si limn→+∞wn=-∞alors limn→+∞un=-∞ Suites géométrique :soitqun réel. On a les limites suivantes :

•Siq>1 alors limn→+∞qn= +∞

•Siq=1 alors limn→+∞qn=1

•Si-1

•Siq?-1 alors limn→+∞qnn"existe pas

3 Opérations sur les limites

3.1 Limite d"une somme

Si(un)a pour limite???+∞-∞+∞

Si(vn)a pour limite??+∞-∞+∞-∞-∞ alors(un+vn)a pour limite?+??+∞-∞+∞-∞F. Ind.

3.2 Limite d"un produit

Si(un)a pour limite???=00∞

Si(vn)a pour limite??∞∞∞

alors(un×vn)a pour limite?×??∞F. ind.∞

3.3 Limite d"un quotient

Si(un)a pour limite???=00?∞∞

Si(vn)a pour limite???=000∞??∞

alors?unvn? a pour limite ??∞F. ind.0∞F. ind. 7 CHAPITRE 2. RAISONNEMENT PAR RÉCURRENCE. LIMITE D"UNE SUITE

4 Convergence d"une suite monotone

Définition 3 :On dit que la suite(un)estmajoréesi, et seulement si, il existe un réelM tel que :?n?Nun?M On dit que la suite(un)estminoréesi, et seulement si, il existe un réelmtel que : ?n?Nun?m Si(un)est majorée et minorée, on dit que la suite estbornée.

Divergence

•Si une suite(un)estcroissante et non majoréealors la suite(un)diverge vers+∞. •Si une suite(un)estdécroissante et non minoréealors la suite(un)diverge vers-∞.

Convergence

•Si une suite(un)estcroissante et majoréealors la suite(un)converge. •Si une suite(un)estdécroissante et minoréealors la suite(un)converge.

Théorème du point fixe

Soit une suite(un)définie paru0etun+1=f(un)convergente vers?. f(x) =x.

Exemple

Calculer la limite de la suite(un)définie paru0=1 etun+1=⎷ 2+un. On peut montrer par récurrence que la suite (un)est croissante et que pour toutn, 0? u n?2 La suite(un)est alors croissante et majorée par 2, elle est donc convergente vers une limite

La fonctionftelle que :f(x) =⎷

2+xest définie et continue sur]-2;+∞[. Comme la

suite(un)est convergente vers?, d"après le théorème du point fixe,?verifie l"équation?=⎷

2+?. En élevant au carré, on trouve :?2-?-2=0 qui admet deux solutions-1 et 2. Comme la suite(un)est positive, elle converge donc vers 2. 8 CHAPITRE 2. RAISONNEMENT PAR RÉCURRENCE. LIMITE D"UNE SUITE 9

Chapitre 3

Étude d"une fonction (chap. 3 à 6)

1 Limites

1.1 Somme

Sifa pour limite???+∞-∞+∞

Siga pour limite??+∞-∞+∞-∞-∞ alorsf+ga pour limite?+??+∞-∞+∞-∞F. Ind.

1.2 Produit

Sifa pour limite???=00∞

Siga pour limite??∞∞∞

alorsf×ga pour limite?×??∞F. ind.∞

1.3 Quotient

Sifa pour limite???=00?∞∞

Siga pour limite???=00**0∞??**∞

alorsfga pour limite ??∞F. ind.0∞F. ind.

1.4 Composition

Composition de deux fonctions.

Soit deux fonctionsf,g. Soienta,betcdes réels ou+∞ou-∞.

Si limx→

af(x) =bet limx→bg(x) =calors limx→ag[f(x)]=c

1.5 Fonction et suite

Soit une suite(un)définie par :un=f(n).fest alors la fonction réelle associée à la suite (un). Soitaun réel ou+∞ou-∞

Si lim

x→+∞f(x) =aalors limn→+∞un=a 10 CHAPITRE 3. ÉTUDE D"UNE FONCTION (CHAP. 3 À 6)

1.6 Comparaison

f,g, ethsont trois fonctions définies sur l"intervalleI=]b;+∞[et?un réel.

1)Théorème des " Gendarmes»Sipour toutx?I, on a :g(x)?f(x)?h(x)et si:

lim x→+∞g(x) =limx→+∞h(x) =?alors limx→+∞f(x) =?

2)Théorème de comparaisonSipour toutx?Ion a :f(x)?g(x)et si:

lim x→+∞g(x) = +∞alors limx→+∞f(x) = +∞

2 Continuité

Définition 4 :Soit une fonctionfdéfinie sur un intervalle ouvert I. Soitaun élément de I. On dit que la fonctionfestcontinueenasi et seulement si : lim x→af(x) =f(a) Fonctions continues :Toutes fonctions construites par somme, produit, quotient ou par

composition à partir de fonctions élémentaires sont continues sur leur ensemble de défini-

tion. C"est par exemple le cas pour les fonctions polynômes et rationnelles. Sifest dérivable enaalors la fonctionfest continue ena. ?La réciproque est fausse.

Théorème des valeurs intermédiaires

Soit une fonctionfdéfinie etcontinuesur un intervalleI= [a,b]. Pour tout réelkcompris entref(a)etf(b), il existe un réelc?Itel quef(c) =k. (cn"est pas nécessairement unique. Soit une fonctionfcontinue et strictement monotonesurI= [a,b]. Alors, pour toutkcompris entref(a)etf(b), l"équationf(x) =k a une solutionuniquedansI= [a,b] Si l"intervalleI=]a,b[est ouvert,kdoit alors être compris entre limx→af(x)et limx→bf(x) 11 CHAPITRE 3. ÉTUDE D"UNE FONCTION (CHAP. 3 À 6)

Soitfdéfnie parf(x) =x3+x-3

fest continue et strictement croissante sur I=[1;2] carfest dérivable sur I etf?(x) =3x2+1>0. De plusf(1)=-1 etf(2)=7. D"après le théorème des valeurs intermédiaires,f(x) =0 admet une unique solutionαdans[1;2].

Ci-contre un algorithme, utilisant le principe de

dichotomie, permet de trouver une approxima- tion deαà la précision de 10-6. On pose :

•AetBles bornes de l"intervalle.

•Pla précision (entier positif).

•Nle nombre d"itérations.

On rentre :A=1,B=2,P=6 et

f(x) =x3+x-3

On obtient :A=1,213 411,B=1,213 412 etN=

20.

Variables

A,B,C,P,N,f(fonction)

Algorithme

LireA,B,P

0→N

Tant queB-A>10-P

A+B

2→C

Sif(A)×f(C)>0 (*)

C→A

Sinon

C→B

FinSi

N+1→N

FinTanque

Afficher :A,B,N

3 Dérivabilité

Définition 5 :Soit une fonctionfdéfinie sur un intervalle I etaun point de I. On dit que la fonctionfest dérivable enasi et seulement si le taux d"accroissement de la fonctionfen aadmet une limite finie?ena, c"est à dire : lim h→0f(a+h)-f(a) h=?et?=f?(a) Variation :Soit une fonctionfdérivable sur un intervalle I. •Si?x?I,f?(x) =0, alors la fonctionfestconstantesur I. •Si?x?I,f?(x)>0, alors la fonctionfestcroissantesur I. •Si?x?I,f?(x)<0, alors la fonctionfestdécroissantesurI.

3.1 Dérivées des fonctions usuelles

FonctionDérivéeD?f

f(x) =kf?(x) =0R f(x) =xf?(x) =1R f(x) =xnn?N?f?(x) =nxn-1R f(x) =1xf?(x) =-1x2R? 12 CHAPITRE 3. ÉTUDE D"UNE FONCTION (CHAP. 3 À 6)

FonctionDérivéeD?f

f(x) =1xnn?N?f?(x) =-nxn+1R? f(x) =⎷xf?(x) =12⎷xR?+ f(x) =sinxf?(x) =cosxR f(x) =cosxf?(x) =-sinxR f(x) =tanxf?(x) =1+tan2xR-?π2+kπ? f(x) =ln(x)f?(x) =1xR?+ f(x) =exf?(x) =exR

3.2 Règles de dérivation

DérivéeFormule

de la somme(u+v)?=u?+v? deku(ku)?=ku? du produit(uv)?=u?v+uv? de l"inverse ?1 u? =-u?u2 du quotient ?u v? ?=u?v-uv?v2 de la puissance(un)?=nu?un-1 de la racinequotesdbs_dbs16.pdfusesText_22

[PDF] formule soustraction open office

[PDF] repartir une somme proportionnellement excel

[PDF] exercice partage proportionnel

[PDF] pente négative

[PDF] nourrir l'humanité fiche de révision

[PDF] perimetre du triangle equilateral

[PDF] le périmètre d'un triangle rectangle est 80m

[PDF] nourrir l'humanité 1ere s qcm

[PDF] periode oscillation ressort

[PDF] période pendule pesant

[PDF] periode oscillation pendule

[PDF] nourrir l humanité 1ere es corrigé

[PDF] démonstration période pendule simple

[PDF] formule de borda

[PDF] ds svt 1ere s nourrir l humanité