[PDF] Filière sciences de la matière Cours délectrochimie SMC Semestre 5


Filière sciences de la matière Cours délectrochimie SMC Semestre 5


Previous PDF Next PDF



L3 Chimie des Matériaux 2014-2015 Conformité

III - Programme détaillé par matière des semestres S5 et S6 [1] Electrochimie des concepts aux applications- Cours et exercices corrigés



Chimie (problèmes et exercices) Indice 540.76 Nombres de Titres

Chimie organique : rappels de cours et exercices corrigés. Gruia Marie 547/03. 08. 3. 2729857567. Exercices corrigés de chimie organique. Gruia



Filière Sciences de la Matière Chimie Cours Chimie des Solutions Filière Sciences de la Matière Chimie Cours Chimie des Solutions

Exercice. On considère une solution d'acide faible de concentration initiale C0 S5. = (. . 108. ) 1. 5. 3.2. Conditions de précipitation. A+ + B- → AB.



Untitled Untitled

Exercice 1 : Calculer la force ionique de l'eau de mer dont la composition est : Composé. NaCl. MgCl2 EPREUVE : Electrochimie (sans document). Durée : 2 h ...



«EXERCICES ET PROBLEMES CORRIGES DE

Sciences-Mathématiques-Physique (SMP) Sciences-Mathématiques-Chimie. (SMC) et Sciences de la Vie (SVI) des facultés des sciences. Il comporte des exercices 



Exercices Cinétique électrochimique – Courbes intensité-potentiel Exercices Cinétique électrochimique – Courbes intensité-potentiel

Correction détaillée en vidéo. Page 8. Usage personnel uniquement. 8. Exercice n° 5 : Cinétique électrochimique limitée par le transfert de matière*. Soit une 



Exercices de révision- Oxydo-réduction et Piles électrochimiques

Corrigé. Exercice I. On considère la pile symbolisée par: Cu / Cu2+ (01M) Exercices de révision- Oxydo-réduction et Piles électrochimiques



Electrochimie des solides - Exercices corrigés avec rappels de cours Electrochimie des solides - Exercices corrigés avec rappels de cours

Grenoble Sciences est un centre de conseil expertise et labellisation de l'ensei- gnement supérieur français. Il expertise les projets scientifiques des 



Electrochimie Exercice n° 1 : Electrochimie Exercice n° 1 :

Electrochimie. Exercice n° 1 : On réalise la pile Daniell en utilisant : - un Correction d'exercice 4 : 1- le couple d'oxydoréduction relatif à cette ...



Electrochimie des solides - Exercices corrigés avec rappels de cours

Grenoble Sciences est un centre de conseil expertise et labellisation de l'ensei- gnement supérieur français. Il expertise les projets scientifiques des 



Filière sciences de la matière Cours délectrochimie SMC Semestre 5

CHAPITRE III : CINETIQUE ELECTROCHIMIQUE. I. Polarisation et surtension d'une électrode. I.1. Définition : I.2. Différents types de courbe de polarisation.



Chimie (problèmes et exercices) Indice 540.76 Nombres de Titres

chimiques : rappels de cours exercices corrigés. Gruia



Electrochim Electrochimie

migration des ions sous l'influence du champ électrique diffusion des ions due au gradient de concentration que provoq ction à l'électrode : voir exercice du TD.



Chimie Analytique 2éme année pharmacie - Electrochimie - Dr

On mesure les grandeurs électriques (potentiel courant



Électrochimie

Constitution d'une pile éq de fonctionnement



METHODES ELECTROCHIMIQUES POUR LANALYSE IN SITU DE

18 fév. 2008 J'exprime toute ma gratitude à Maurice Comtat professeur au laboratoire de Génie. Chimique de Toulouse



Cinétique électrochimique

7 avr. 2021 TD 25 – Électrochimie. Correction. Cinétique électrochimique. Exercice 1 : Allure d'une courbe intensité-potentiel.



Untitled

Epreuve d'Electrochimie (Session 2 décembre 2005). Durée : 1 heure. Exercice 1 : Calculer la force ionique d'une solution obtenue en mélangeant 50 cm3 



Cours et exercices corrigés

Connaître un peu de minéralogie est égale- ment utile en chimie minérale et en physique du solide. 1.2.1 Les minéraux comme éléments constitutifs des roches.

UNIVERSITE CADI AYYAD

Faculté Polydisciplinaire

Safi

Département de Chimie

Filière sciences de la matière

SMC

Semestre 5

Préparé par :

Moulay Rachid LAAMARI

Janvier 2015

1

SOMMAIRE

CHAPITRE I : PILES ET ACCUMULATEURS

I. LES PILES

I.1. Les principaux types de piles.

I.2. Relation entre potentiel de pile et activités des corps dissous. I.3. Variation de E avec la température: Formule de Gibbs Helmotz.

II. ACTIVITES

II.1. Relation entre activité et concentration.

II.3. Théorie de Debye-Huckel

a. Modèle proposé par Debye Huckel b. c. Equation limite de Debye-Huckel. d.

III. LES ACCUMULATEURS

III.1. Les paramètres

II II

CHAPITRE II : DIAGRAMME TENSION-pH

I. Introduction

II. Equilibres acide base.

III. Equilibres redox.

IV. Tracé du diagramme tension pH du cuivre eau à 25°C à partir des potentiels chimiques standards.

CHAPITRE III : CINETIQUE ELECTROCHIMIQUE

I.1. Définition :

I.2. Différents types de courbe de polarisation.

II. ÉQUATION CINETIQUE I = F(E)

0 et équation de Bulter-Volmer

II.3. Les lois limites de la surtension

II.4. Régime mixte de diffusion transfert

2

II.5. Régime pur de diffusion

II.6. Application des courbes de polarisation.

CHAPITRE III : POLAROGRAPHIE

I. Généralités

I.1. Purification du mercure

I.2. Propriétés physiques du mercure

I.3. Électrode à gouttes de mercure

II. Principe du tracé des polarogrammes

II.1 Application du potentiel et appareillage

II.2 Courbe intensité-potentiel

II III. Loi de diffusion et mécanismes réactionnels III

III.Ilkovic

III.3 Systèmes rapides

III.4 Systèmes lents

III.5 Mécanismes cinétiques

III.6 Mécanismes catalytiques :

IV. cas particulier

3

PILES ET ACCUMULATEURS

I. LES PILES

I.1. Les principaux types de piles.

Il y a deux catégories de piles.

Les piles dites impolarisables, dont le fonctionnement ne modifie pas les extrémités de la chaîne. positif en utilisant à ce pôle un système redox de tension plus élevée que celle d a. Piles impolarisables :

Pile Daniell :

+ Cu / CuSO4 // ZnSO4 / Zn -

Pile Weston :

+ Hg / Hg2SO4 + CdSO4 // CdSO4 / (( Cd )) Hg b. Piles à dépolarisant solide

Pile Leclanché

+ C/ MnO2 // NH4Cl / Zn (Hg) -

Pile de Rube Mallory :

+ C, Hg / HgO + Zn(OH)2 // KOH / Zn(Hg) - Pile Lalande : + Cu / CuO // NaOH 20% / Zn( Hg) c. Piles à dépolarisant liquide

Pile de Grove :

+ Pt / HNO3 // ZnSO4 ou H2SO4 / Zn ( amalgamé)

Pile au bichromate de Poggendort :

+ C / K2Cr2O7 + H2SO4 / Zn

Pile de Fery ( Pile air Zinc) :

+ C O2 // NH4Cl ou KOH / Zn d. Etude de la pile Daniel : + Cu / Cu2+ // Zn2+ / Zn La force électromotrice de la pile est E = E+ - E - avec E+ > E- Lorsque plusieurs électrolytes interviennent dans une pile, il existe une tension de jonction liquide/ liquide. Dans ce cas on écrit la f.e.m de la pile : 4

E= E+ - E- +j

j : potentiel de jonction liquide/liquide ( + ) : Cu2+ + 2 e Cu ( - ) : Zn Zn2+ 2e

Schéma de la pile Daniel

I.2. Relation entre potentiel de pile et activités des corps dissous. + Pt / Cl2 // ZnCl2 / Zn Au pôle ( +) : Cl2 +2 e- 2Cl- : E+ = E0 + 0.06/n log( PCl2/a2 Cl-) Au pôle ( - ) : Zn Zn2+ +2 e- : E- = E0 + 0.06/n log( a Zn 2+)

La réaction globale : Cl2 + Zn 2Cl- + Zn2+

Calcul de la tension de la cellule à partir de la formule de Nernst. E = E+ - E- = E0( + ) - E0( - ) - 0.06/2 log (a2 Cl- . a Zn 2+/ PCl2 )

On fait apparaître le terme a2Cl- . a Zn2+

a ( ZnCl2 ) = (a Zn 2+. a2Cl- )1/3 E = E0( + ) - E0( - ) + 0.06/2 log(PCl2 ) - 0.06/2 log a3 ( ZnCl2 ) I.3. Variation de E avec la température: Formule de Gibbs Helmotz. Le potentiel thermodynamique est une grandeur mesurable.

E= - G / nF avec G = H - TS

E = -H/nF + TS/nF

S = - ( G) / ( T) = - ( -nFE )/ T= nFE / T

E / négatif

selon les types de piles. 5 On appelle r : facteur de conversion de la cellule. r = G / H = 1- TS/ H Le rapport r peut être supérieur à 1, si le rapport H / S est négatif c.a.d S est toujours positif, donc la cellule emprunte de la chaleur au milieu extérieur.

II. ACTIVITES

II-1 Relation entre activité et concentration.

La , au moyen des concentrations ne

restent faibles. Cette approximation revient à admettre que les interactions entre particules

Le physico -

peut tenir compte des interactions entre particules, en remplaçant dans la loi particules par une nouvelle grandeur thermodynamique " » concentration et pour un ion B+ on a : aB+ = . C

Il varie avec la concentration.

1 quand C0

En solution infiniment diluée concentration et activité deviennent identiques.

On peut définir l i

i = i 0 + RTln(ci) : faibles concentrations i = i 0 + RTln(ai) : fortes concentrations i 0 : potentiel chimique standard ci ai II.2. 6

BA B+ + A-

a+ et a- sont respectivement les activités des ions B+ et A- . + et - + et A- : a = ( a+ . a- )1/2 = (+ .-)1/2

BA +B+ + -A-

a = ( a++ . a-- )1/( + + -) = (++ .- -)1/( + + -) est définie comme une moyenne géométrique

Ex : Ca (NO3)2 Ca2+ + 2NO3-

Ca2+ = 0 Ca2+ + RTln(a Ca2+)

NO3- = 0 NO3- + RTln(a NO3- )

Ca (NO3)2 = Ca2+ + 2 NO3-

= (Ca2+ . NO3-2)1/3

II.3. Théorie de Debye-Huckel

IV. Modèle proposé par Debye Huckel

Huckel présentent un calcul relativement simple qui proposé est le suivant : Un ion de charge ze acquiert une énergie potentielle U = ze :. : : potentiel électrostatique de la phase ; z e Pour des solutions infiniment diluées, les interactions ion-ion sont négligeables, par contre les interactions ion-solvant (eau) sont i = i 0 + RTln(ci) Lorsque la concentration augmente, les interactions ion-ion électrostatique ( de la forme Ae2/ r) prend des valeurs non 7 négligeables et on aura un terme excédentaire RTln(i potentielle. i = i 0 + RTln(ai)= i 0 + RTln(Ci)+ RTln(i)

Gex = RT ln(i).

Pour un electrolyte se dissociant en ions, on pourrait écrire : i RT ln(i) )= Gex sphères. Les deux charges sont à la distance r .

2/ r ).

r U0 Pour des grandes distances, négligeable, c.à.d. pour des solutions infiniment diluées, elles se comportent comme des solutions idéales. V. La condition de neutralité, pour une solution donnée : ni zi = 0

La répartition de la

Boltzmann : ni = ni exp(-zie/kT)

k : constante de Boltzmann, zi e

T : température,

: potentiel électrostatique, Chaque ion i possède une charge zioù la densité locale de charge est = niie = Zie ni exp( -zie/kT)

La densité et le potentiel : = - 4/D

: opérateur Laplacien , D : constante diélectrique ( D = 4), = 0r

0 : permittivité du vide ; r : permittivité relative.

VI. Equation limite de Debye-Huckel.

log(i) = -AZi2 I / (1+B.aI )

A et B sont des constantes calculables.

I= ½ mi.Zi2 : Force ionique

mi 8 mi = Ci ci mole/l), a = r+ + r- ioniques) .

Pour des solutions aqueuses et à 25 °C ,

A = 0,51 et B = 0,33

Equation valable pour une force ionique : 10 -2 < I < 10 -1

Pour des solutions très diluées, I < 10 -2

Pour des solutions concentrées, I > 10 1

Cest une constante

VII. Calcul du

Soit un électrolyte : BA +B+ + -A-

Par définition :

= (++ .- -)1/( + + -) log( ) = 1/( + + -) log(++.- -) log( ) = 1/( + + -) +log(+) + -log (-) ni Zi = 0 +z+ + -z- = 0, log(i) = -AZi2 I pour I < 10-2

I. LES ACCUMULATEURS

Un accumulateur est une chaîne électrochimique à deux électrodes. Les systèmes électrochimiques utilisés doivent avoir des tensions thermodynamiques suffisamment différentes f. e. minimum). 9 On peut définir un accumulateur comme une pile rechargeable, c. a. d qui appliquant aux bornes de la chaîne une différence de potentiel opposée à E.

Sa capacité en (A.h)

Son énergie spécifique massique en WhKg-1 et volumique Whl-1. Sa puissance spécifique massique WKg-1 et volumique Wl-1.

Son rendement coulombique Q

-Accumulateur au plomb ( Plante) : + PbO2 // H2SO4 / Pb - Accumulateur alcalin au fer-nickel et au fer cadmium nickel :. + Ni2O3, nH2O // KOH / ( Fe , Cd ) - Accumulateur argent zinc. + Ag / AgO // KOH/ Zn - n stables sous la forme Pb ; Pb2+ et PbO2 . Pb Pb2+ + 2e- E0 = -0.13 V/ENH PbO2 + 4H+ + 2e Pb2+ + 2 H2O E0 = 1.45 V/ENH

Reaction globale :

Pb + PbO2 + 4H+ + 2SO4 2- Pb2+ + SO4 2- 2 H2O + Pb2+ + SO4 2- 10 sulfurique diminue pendant la décharge et croit pendant la charge. 11

DIAGRAMME TENSION-pH

Introduction

ces différents corps existent des équilibres qui peuvent être de deux types : - Equilibres acide base, dépendants du pH, mais indépendants du potentiel. - Equilibres redox, dépendants au contraire de la tension et en outre du

I. Equilibres acide base.

Soit la réaction acido-basique :

a. Acide + qH2O b. Base + pH+

K = BasebH+p / Acidea H2Oq

log K = -1/ ( 2 ,3.RT) / ( i0 ( base) - i0 ( acide)

1er cas : Si les deux espèces sont solubles ( acide et base). Le pH de passage

bAcide = aBase = ࡯

2ème cas

bAcide = C pH = -1/p log(K) +a/p log(b) -a/p log(C) Dans un diagramme tension pH , ces équilibres sont représentés par des droites verticales.

II. Equilibres redox.

Soit la réaction électrochimique suivante :

a Ox + pH + qH2O + n e- b Red 12 i Ox +n e- i E0 = a.0( ox) + q.0(H2O) - b.0(red) / ( 23060.n)

E = E0 + 0,06 log( Oxa / Redb) 0,06pH.(p/n)

1er cas : Les deux formes Ox et Red sont dissoutes.

b.Ox = a.Red E = E0 0,06pH.(p/n)+ 0,06/n log( 2ab / 2ba)+ ( a-b)0,06/n logC

Le potentiel E dépend de C, sauf pour a = b.

2ème cas : Red )

b.Ox = C E = E0 0,06pH.(p/n)+ 0,06/n a. log(b) + 0,06a/n. logC

3ème cas : Si les deux formes sont solides.

quotesdbs_dbs1.pdfusesText_1
[PDF] electrochimie s5 pdf

[PDF] electrocinetique exercices corrigés pdf pcsi

[PDF] electrolyse bateau aluminium

[PDF] electrolyse bateau polyester

[PDF] electrolyse du zinc

[PDF] electromenager discount pau

[PDF] electronic banking definition

[PDF] electronique de puissance cours complet

[PDF] électronique de puissance cours et exercices corrigés pdf

[PDF] electronique de puissance cours gratuit

[PDF] electronique de puissance hacheur exercices

[PDF] electronique de puissance redresseur

[PDF] electronique de puissance thyristor pdf

[PDF] electronique pratique montage pdf

[PDF] electrostatique exercices corrigés gratuit