[PDF] ALGÈBRE Cours et Exercices Première Année LMD





Previous PDF Next PDF



Corrigés des exercices Ensembles et applications

Corrigés des exercices. Ensembles et applications. N'hésitez pas à m'envoyer un mail si vous avez des questions.1. 1 Ensembles. Exercice 1.



Logique ensembles et applications

Exercice 1 **IT. Exprimer à l'aide de quantificateurs les phrases suivantes puis donner leur négation. 1. (f étant une application du plan dans lui-même).



Ensembles et applications

Pour les trois exercices suivants on rappelle que deux ensembles A et B sont dits en bijection s'il existe une application bijective entre A et B. Exercice 8.



Pascal Lainé Ensembles-Applications Exercice 1 : Soit : ? définie

est une application. (i) bijective (ii) injective et pas surjective (iii) surjective et pas injective (iv) ni surjective ni injective. Justifier.



roger.mansuy@gmail.com

20 nov. 2021 Mathématiques MPSI que tout élément admette un symétrique se fera indépendamment de la nature des éléments (nombres ensembles



Tout-en-un

Tous les corrigés détaillés. + d'exercices à télécharger Éléments de logique — Ensembles — Applications ... Aide à la résolution des exercices .



ALGÈBRE Cours et Exercices Première Année LMD

2 Ensembles et Applications. 20. 2.1 Ensembles . La partie entrainement comprend des exercices qui ont été choisis soigneusement. ... Corrigé 1.5.1.



Fondements 3 – Ensembles applications – Corrigés

Lycée Louis-Le-Grand Paris. 2013/2014. MPSI 4 – Mathématiques. A. Troesch. Fondements 3 – Ensembles



Exercices de mathématiques - Exo7

L'application exp : C ? Cz ?? ez



Méthodes et exercices

21 Matrices et applications linéaires Les corrigés des exercices 393 ... Définition et propriétés des opérations entre ensembles n

ALGÈBRE

Cours et Exercices

Première Année LMD

Marir Saliha

2

Table des matières

1 Notions de Logique Mathématique 6

1.1 Préambule . . . . . . . . . . . . . . . . . . . . . . .

6

1.2 Connecteurs logiques . . . . . . . . . . . . . . . . .

8

1.3 Propriétés des connecteurs logiques . . . . . . . . .

10

1.4 Quantificateurs mathématiques . . . . . . . . . . .

12

1.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . .

15

2 Ensembles et Applications 20

2.1 Ensembles . . . . . . . . . . . . . . . . . . . . . . .

20

2.1.1 Inclusion . . . . . . . . . . . . . . . . . . . .

21

2.1.2 Opérations sur les ensembles . . . . . . . . .

22

2.1.3 Propriétés des opérations sur les ensembles .

25

2.1.4 Partition . . . . . . . . . . . . . . . . . . . .

26

2.1.5 Produit Cartésien . . . . . . . . . . . . . . .

27

2.1.6 Exercices sur les ensembles . . . . . . . . . .

27

2.2 Applications . . . . . . . . . . . . . . . . . . . . . .

31

2.2.1 Composition d"applications . . . . . . . . .

32

2.2.2 Image directe et Image réciproque . . . . . .

32

2.2.3 Injection, Surjection, Bijection . . . . . . . .

3 6

2.2.4 Exercices . . . . . . . . . . . . . . . . . . .

41

3 Relations Binaires 48

3.1 Généralités . . . . . . . . . . . . . . . . . . . . . .

48

3.1.1 Propriétés des relations binaires dans un en-

semble . . . . . . . . . . . . . . . . . . . . . 49

3.2 Relation d"équivalence . . . . . . . . . . . . . . . .

50

3.3 Relation d"ordre . . . . . . . . . . . . . . . . . . . .

52

3.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . .

53
3

4TABLE DES MATIÈRES

Bibliographie 62

Introduction

Ce polycopié reprend quelques notions mathématiques à la base de la partie Algèbre de l"unité d"Enseignement Maths1 de premières années LMD Sciences et techniques et Mathématiques et informa- tique. Il peut aussi être utilement utilisé par les étudiants d"autres paliers aussi bien en sciences et sciences et techniques que ceux de

Biologie, Sciences économiques ou autre.

Les chapitres de ce texte se décomposent de la façon suivante : Le cours contient les notions à assimiler. Il convient d"en ap- prendre les définitions et les énoncés des résultats principaux. Les démonstrations données doivent être comprises ainsi que les exemples proposés tout au long du cours. La partie entrainement comprend des exercices qui ont été choisis soigneusement. Il est conseillé de s"exercer à résoudre par soi-même les exercices sans avoir une solution à côté . C"est grâce à ce travail personnel indispensable que l"on peut aller loin dans la compréhension et l"assimilation des notions mathématiques introduites. C"est la seule méthode connue à ce jour pour progresser en mathématiques. L"étu- diant consciencieux travaillera la justification de chacune de ses réponses. Rappelons que trouver la bonne réponse ne suffit pas en science, il faut aussi la justifier! La partie Solutions des exercices proposés que l"étudiant pourra consulter en cas de difficulté. 5

Chapitre 1

Notions de Logique

Mathématique

Sommaire1.1 Préambule . . . . . . . . . . . . . . . . . .6

1.2 Connecteurs logiques . . . . . . . . . . .

8

1.3 Propriétés des connecteurs logiques . .

10

1.4 Quantificateurs mathématiques . . . . .

12

1.5 Exercices . . . . . . . . . . . . . . . . . . .

15 1.1 Préambule

Les mathématiques actuelles sont bâties de la façon suivante : Axiome :Un axiome est un énoncé supposé vrai à priori et que l"on ne cherche pas à démontrer. Exemple 1.1.1.Euclide a énoncé cinq axiomes qui devaient être la base de la géométrie euclidienne; le cinquième axiome a pour énoncé : Par un point extérieur à une droite, il passe une et une seule droite parallèle à cette droite. 6

1.1. PRÉAMBULE7

Les cinq axiomes de Péano, qui définissent l"ensemble des en- tiers naturels. Le cinquième axiome est : siPest une partie deNcontenant0et que tout successeur de chaque élément dePappartient àP(le successeur de n estn+1) alorsP=N. Cet axiome est appelé " axiome d"in- duction ». Définition :Une définition est un énoncé dans lequel on décrit les particularités d"un objet mathématique. On doit avoir conscience que le mot "axiome" est parfois synonyme de "définition". Démonstration :(ou preuve) c"est réaliser un processus qui per- met de passer d"hypothèses supposées vraies à une conclusion et ce en utilisant des règles strictes de logique. On décide enfin de qualifier de vraie toute affirmation obtenue en fin de démonstration et on l"appelle selon son importance,

Lemme :Un résultat d"une importance mineure.

Théorème :Un résultat d"une importance majeure. Corollaire :Un corollaire à un théorème est conséquence à ce théo- rème. Conjecture :Un résultat mathématique que l"on suppose vrai sans parvenir à le démontrer. Exemple 1.1.2.La conjecture de Fermat : sin2N; n3, il n"existe pas d"entiers naturelsx;y;ztels que x n+yn=zn Récemment, ce résultat a été démontré. Proposition :Une proposition est un énoncé mathématique pouvant être vrai ou faux, on la note par les lettres P, Q, R,...etc. Exemple 1.1.3.L"énoncé " 24 est multiple de 4 » est une propo- sition vraie. L"énoncé " 19 est multiple de 3 » est une proposition fausse. A toute proposition correspond une table de véritéP V FouP 1 0

8CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

Pour deux propositionsPetQnon précisées, correspond22possi- bilités d"attribution de véritéPQ 11 10 01 00 D"une manière générale, ànpropositions correspond2npossibilités d"attribution de vérité.

1.2 Connecteurs logiques

Si P est une proposition et Q est une autre proposition, nous allons définir de nouvelles propositions construites à partir de P et de Q.

Négation d"une proposition

La négation d"une proposition P est une proposition notéeP et définie à partir de sa table de véritéPP 10 01

Conjonction " et »

La conjonction est le connecteur logique " et » qui à tout couple de propositions(P;Q)associe la proposition "P et Q », notéeP^Qet définie ainsi :P^Qest vraie siPetQsont toutes les deux vraies simultanément, fausse dans les autres cas. On résume ceci dans la table de vérité suivantePQP^Q111 100
010 000

1.2. CONNECTEURS LOGIQUES9

Disjonction " ou »

La disjonction est le connecteur logique " ou » qui à tout couple de propositions(P;Q)associe la proposition "P ou Q », notéeP_Qet définie ainsi :P_Qest fausse siPetQsont toutes les deux fausses simultanément, vraie dans les autres cas. On résume ceci dans la table de vérité suivantePQP_Q111 101
011 000

Implication ")»

L"implication est le connecteur logique qui à tout couple de propositions(P;Q)associe la proposition "P implique Q », notéeP)Qet définie ainsi :P)Qest fausse lorsqueP est vraie etQest fausse, vraie dans les autres cas. On résume ceci dans la table de vérité suivantePQP)Q111 100
011 001

Equivalence ",»

L"équivalence est le connecteur logique qui à tout couple de propositions(P;Q)associe la proposition "P équivaut Q », notéeP,Qet définie ainsi :P,Qest vraie lorsquePet Qont la même valeur de vérité, fausse dans les autres cas. On résume ceci dans la table de vérité suivantePQP,Q111 100
010 001

10CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

1.3 Propriétés des connecteurs logiques

Considérons la propositionP. Cette proposition peut prendre la valeur de vérité vrai ou faux. Considérons la proposition composée R=P_P Cette proposition est remarquable. En effet,Rest toujours vraie et ce indépendamment deP. Vérifions-le :PPP_P 101

011(1.1)

La propositionRest alors qualifiée de tautologie. Définition 1.3.1.Une proposition qui est vraie quelles que soient les valeurs de vérité des propositions qui la composent est appelée une Tautologie. Propriétés 1.3.1.Quelles que soient les valeurs de vérité des pro- positionsP,QetR, les propositions suivantes sont toujours vraies. P_P P,P P^P,P P_P,P

P^Q,Q^P(Le connecteur^est commutatif)

P_Q,Q_P(Le connecteur_est commutatif)

1.3. PROPRIÉTÉS DES CONNECTEURS LOGIQUES11

(P^Q)^R,P^(Q^R)(Le connecteur^est associatif) (P_Q)_R,P_(Q_R)(Le connecteur_est associatif)

P^(Q_R),(P^Q)_(P^R)(Le connecteur^est dis-

tributif sur_)

P_(Q^R),(P_Q)^(P_R)(Le connecteur_est dis-

tributif sur^)

P^(P_Q),P

P_(P^Q),P

[(P)Q)^(Q)R)])(P)R)(Transitivité de)) (P,Q),[(P)Q)^(Q)P)]

P^Q,P_Q(Lois de Morgan)

P_Q,P^Q(Lois de Morgan)

[(P,Q)^(Q,R)])(P,R)(Transitivité de,) (P)Q),(P_Q) (P)Q),(Q)P)(contraposée) Remarque 1.3.1.On peut démontrer ces propriétés en dressant la table de vérité.

12CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

1.4 Quantificateurs mathématiques

a)-

F ormeprop ositionnelle

Définition 1.4.1.Etant donné un ensembleE. On appelle forme propositionnelle à une variable définie surE, toute ex- pression mathématique contenant une variablex, telle que quand on remplace cette variable par un élément deE, on obtient une proposition. On la note parP(x).

Exemple 1.4.1.L"énoncé suivant :

P(n) : " n est un entier naturel multiple de 3» est une forme propositionnelle surNcar il devient une pro- position lorsqu"on donne une valeur àn. En effet, P(30 ): "30 est multiple de 3» est une pr opositionvr aie. P(19 ): "19 est multiple de 3» est une pr opositionfausse. Remarque 1.4.1.On peut avoir une forme propositionnelle à deux variables notéeP(x;y);x2E;y2FoùEetFsont deux ensembles. b)-

Les Qu antificateursuni verselssimples

A partir d"une forme propositionnelle P(x) définie sur un en- semble E, on construit de nouvelles propositions dites propo- sitions quantifiées en utilisant les quantificateurs "quel que soit» et "il existe». Définition 1.4.2.Le quantificateur "quel que soit», noté8, permet de définir la proposition "8x2E;P(x)» qui est vraie si pour tous les élémentsxdeE, la propositionP(x)est vraie.

Exemple 1.4.2.

-8x2[3;1];x2+ 2x30est une proposition vraie. -8n2N;(n3)n >0est une proposition fausse.

1.4. QUANTIFICATEURS MATHÉMATIQUES13

Définition 1.4.3.Le quantificateur " il existe au moins», noté9, permet de définir la proposition "9x2E;P(x)» qui est vraie si on peut trouver au moins un élémentx2Etel que la propositionP(x)soit vraie. S"il existe un et un seul élément x, on pourra écrire

9!x2E;P(x)

On dira dans ce cas qu"il existe un élément unique x vérifiant P(x).

Exemple 1.4.3.

-"9x2R;x2= 4» est une proposition vraie. -"9x2R;ex<0» est une proposition fausse. -"8n2N;(n2pair)n pair» est une proposition vraie. c)-

Les Règles de négation

SoitP(x)une forme propositionnelle sur un ensembleE.

La négation de8x2E;P(x)est9x2E;P(x)

La négation de9x2E;P(x)est8x2E;P(x)

Exemple 1.4.4.

-9x2R;ex0, 8x2R;ex>0 -8n2N;(n2pair)n pair),(9n2N;(n2pair)^(n impair)) d)-

Les Quan tificateursm ultiples

Définition 1.4.4.SoitP(x;y)une forme propositionnelle à deux variables avecx2Eety2F. -La proposition quantifiée :8x2E;8y2F; P(x;y)est vraie lorsque tous les élémentsxdeEet tous les élémentsydeF vérifientP(x;y).

14CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

-La proposition quantifiée :9x2E;9y2F; P(x;y)est vraie lorsqu"il existe au moins un élémentxdeEet lorsqu"il existe au moins un élémentydeFvérifiantP(x;y).

Exemple 1.4.5.

-La proposition quantifiée :

8n2N;8x2R+;1 +nx0

est vraie. -La proposition quantifiée :

8n2N;8x2R;1 +nx0

est fausse. -La proposition quantifiée :

9x2R;9y2R;2x5y= 1

est vraie. e)-

Règles d" utilisation

On peut combiner des quantificateurs de natures différentes. Par exemple, l"énoncé " tout nombre réel positif possède une racine carrée» s"écrit

8y2R+;9x2R; y=x2

mais attention, il faut respecter les règles suivantes : -On peut permuter deux quantificateurs identiques (8x2E;8y2F;P(x;y)),(8y2F;8x2E;P(x;y)) (9x2E;9y2F;P(x;y)),(9y2F;9x2E;P(x;y)) -Ne pas permuter deux quantificateurs différents.

9y2F;8x2E;P(x;y)

n"est pas équivalente à

8x2E;9y2F;P(x;y)

1.5. EXERCICES15

1.5 Exercices

Exercice 1.5.1.Ecrire les contraposées des implications suivantes et les démontrer. n est un entier naturel, x et y sont des nombres réels. (1)n premier)n=2 ou n impair (2)(xy6= 0))(x6= 0^y6= 0) (3)(x6=y))((x+ 1)(y1)6= (x1)(y+ 1)) Exercice 1.5.2.Ecrire les réponses aux questions suivantes, por- tant sur des entiers naturels, sous forme de propositions mathéma- tiques écrites avec les symboles8;^;_;);,et les prouver. (1)Le produit de deux nombres pairs est-il pair? (2)Le produit de deux nombres impairs est-il impair? (3)Le produit d"un nombre impair par un nombre pair est-il pair ou impair? (4)Un nombre entier est-il pair si et seulement si son carré est pair? Exercice 1.5.3.Les propositions suivantes sont-elles vraies ou fausses? Justifier votre réponse et donner leurs négations. (1)9x2R;8y2R;x+y >0 (2)8x2R;9y2R;x+y >0 (3)9x2R;8y2R;y2> x (4)82R+;92R+;jxj< )x2<

Exercice 1.5.4.Montrer quep2n"est pas rationnel.

Exercice 1.5.5.Montrer quep3n"est pas rationnel.

Exercice 1.5.6.

Montrer quep2 +

p3n"est pas rationnel.

16CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

Corrigés

Corrigé 1.5.1.

(1)(n6= 2)^(n pair))n non premier On suppose que(n6= 2)^(n pair)alorsnest divisible par 2, par suitenn"est pas premier. (2)(x= 0)_(y= 0))(xy= 0)trivial (3)(x+ 1)(y1) = (x1)(y+ 1))x=y

En effet

(x+1)(y1) = (x1)(y+1),xyx+y1 =xy+xy1 ce qui donnex=y

Corrigé 1.5.2.

(1)8n2N;8m2N;(n pair)^(m pair))nm pair On suppose que n et m sont deux entiers naturels pairs et on montre que leur produit l"est aussi. n pair, 9k12N;n= 2k1; m pair, 9k22N;m= 2k2; on obtient alors, nm= 2(2k1k2|{z}

K) = 2K;K2N;

par suitenmest pair. (2)8n2N;8m2N;(n impair)^(m impair))nm impair On suppose que n et m sont deux entiers naturels impairs et on montre que leur produit l"est aussi. n impair, 9k12N;n= 2k1+ 1;

1.5. EXERCICES17

m impair, 9k22N;m= 2k2+ 1; on obtient alors, nm= 2(2k1k2+k1+k2|{z}

K) + 1 = 2K+ 1;K2N;

par suitenmest impair. (3)8n2N;8m2N;(n pair)^(m impair))nm pair (même raisonnement que (1) et (2)) (4)8n2N;(n pair),n2pair.

On est amené à montrer deux implications,

(n pair))(n2pair)est vraie (voir réponse(1) en pre- nant n=m pair). n2pair)(n pair),|{z} contraposée(n impair))n2impairquotesdbs_dbs1.pdfusesText_1
[PDF] enset 2017-2018

[PDF] enset de kumba 2017

[PDF] enset de kumba pdf

[PDF] enset kumba 2017-2018

[PDF] ensicaen informatique

[PDF] ensmm besançon avis

[PDF] ensmm classement

[PDF] ensmm frais de scolarité

[PDF] ent 95

[PDF] ent amu

[PDF] ent amu univ

[PDF] ent enseirb

[PDF] ent ensmm

[PDF] ent espe bretagne

[PDF] ent fauriel