[PDF] Lectures on Electromagnetic Field Theory





Previous PDF Next PDF



Lectures on Electromagnetic Field Theory

04-Dec-2019 The discipline of electromagnetic field theory and its pertinent technologies is also known as electromagnetics. ... pdf 2018. [92] Wikipedia



Theory of electromagnetic fields Theory of electromagnetic fields

4: Electric and magnetic fields in a plane electromagnetic wave in free space. The wave vector k is in the direction of the +z axis. 3.2 Wave equation for the 



Electromagnetic Field Theory Electromagnetic Field Theory

Fundamental vector field quantities in electromagnetics: ✓Electric field intensity - E units = volts per meter (V/m ). ✓Electric flux density (electric 



LECTURE NOTES ON ELECTROMAGNETIC FIELD THEORY

Principles of Electromagnetics 6th Edition



ELECTRO MAGNETIC FIELDS LECTURE NOTES B.TECH (II YEAR ELECTRO MAGNETIC FIELDS LECTURE NOTES B.TECH (II YEAR

Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines. UNIT – I Electrostatics:.



(6TH SEMESTER) ELECTROMAGNETIC THEORY (3-1-0) MODULE

vector analysis in the study of electromagnetic field theory is prerequisite first we will go through vector algebra. Applications of Electromagnetic theory:.



ELECTRO MAGNETIC FIELD THEORY

FIELD. THEORY. Υ. Bo Thidé. U P S I L O N. M E D I A. Page 2. Page 3. Bo Thidé. ELECTROMAGNETIC FIELD THEORY. Page 4. Also available. ELECTROMAGNETIC FIELD 





Electromagnetic Field Theory - Zahn Solutions Manual

FIELD THEORY a problem solving approach. Page 2. Page 3. Instructor's Manual to accompany. ELECTROMAGNETIC FIELD THEORY: A PROBLEM SOLVING APPROACH by. Markus 



Electromagnetic Field Theory

ELECTROMAGNETIC FIELD THEORY. EXERCISES by. Tobia Carozzi Anders Eriksson



Lectures on Electromagnetic Field Theory

04-Dec-2019 5.2.1 Electric Field Inside a Conductor . ... field theory this is a course intended to “level the playing ... Waveguides p.pdf



electro magnetic fields lecture notes b.tech (ii year – i sem) (2019-20)

Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines. UNIT – I Electrostatics:.



Theory of electromagnetic fields

The fields B (magnetic flux density) and E (electric field strength) determine the force on a particle of charge q travelling with velocity v (the Lorentz force 



ELECTRO MAGNETIC FIELD THEORY

ELECTROMAGNETIC. FIELD THEORY. Bo Thidé. Swedish Institute of Space Physics and. Department of Astronomy and Space Physics. Uppsala University Sweden.



Electromagnetic Field Theory

5 Electromagnetic Fields from Arbitrary Source Distributions and magnetism into a super-theory electromagnetism or classical electrodynam-.



Electromagnetic Field Theory

Vector Analysis Coulomb's Law



(6TH SEMESTER) ELECTROMAGNETIC THEORY (3-1-0) MODULE

directly with the electric and magnetic field vectors where as circuit theory deals with vector analysis in the study of electromagnetic field theory is ...



LECTURE NOTES ON ELECTROMAGNETIC FIELD THEORY

ELECTROMAGNETIC FIELD. THEORY. 2019 – 2020. II B. Tech I Semester (R15) Behavior of Conductors in an Electric Field-Conductors and Insulators – Electric ...



Electromagnetic Field Theory - A Problem-Solving Approach - Part 1

areas: (1) charges as the source of the electric field coupled to Electromagnetic field theory is the study of forces between.



Lectures on Electromagnetic Field Theory

02-May-2020 This set of lecture notes is from my teaching of ECE 604 Electromagnetic Field Theory

Lectures on

Electromagnetic Field Theory

Weng Cho CHEW

1

Fall 2019, Purdue University

1

Updated: December 4, 2019

Contents

Prefacexi

Acknowledgementsxii

1 Introduction, Maxwell's Equations1

1.1 Importance of Electromagnetics . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 A Brief History of Electromagnetics . . . . . . . . . . . . . . . . . . . 3

1.2 Maxwell's Equations in Integral Form . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Static Electromagnetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Coulomb's Law (Statics) . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Electric FieldE(Statics) . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Gauss's Law (Statics) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Derivation of Gauss's Law from Coulomb's Law (Statics) . . . . . . . 9

2 Maxwell's Equations, Dierential Operator Form15

2.1 Gauss's Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Gauss's Law in Dierential Operator Form . . . . . . . . . . . . . . . 18

2.1.2 Physical Meaning of Divergence Operator . . . . . . . . . . . . . . . . 19

2.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Stokes's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Faraday's Law in Dierential Operator Form . . . . . . . . . . . . . . 22

2.2.2 Physical Meaning of Curl Operator . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Maxwell's Equations in Dierential Operator Form . . . . . . . . . . . . . . . 24

3 Constitutive Relations, Wave Equation, Electrostatics, and Static Green's

Function25

3.1 Simple Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Emergence of Wave Phenomenon, Triumph of Maxwell's Equations . . . . . 26

3.3 Static Electromagnetics{Revisted . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Poisson's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Static Green's Function . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Laplace's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i iiElectromagnetic Field Theory

4 Magnetostatics, Boundary Conditions, and Jump Conditions35

4.1 Magnetostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 More on Coulomb's Gauge . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Boundary Conditions{1D Poisson's Equation . . . . . . . . . . . . . . . . . . 37

4.3 Boundary Conditions{Maxwell's Equations . . . . . . . . . . . . . . . . . . . 39

4.3.1 Faraday's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Gauss's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Ampere's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.4 Gauss's Law for Magnetic Flux . . . . . . . . . . . . . . . . . . . . . . 44

5 Biot-Savart law, Conductive Media Interface, Instantaneous Poynting's

Theorem45

5.1 Derivation of Biot-Savart Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Boundary Conditions{Conductive Media Case . . . . . . . . . . . . . . . . . . 47

5.2.1 Electric Field Inside a Conductor . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Magnetic Field Inside a Conductor . . . . . . . . . . . . . . . . . . . . 49

5.3 Instantaneous Poynting's Theorem . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Time-Harmonic Fields, Complex Power55

6.1 Time-Harmonic Fields|Linear Systems . . . . . . . . . . . . . . . . . . . . . 55

6.2 Fourier Transform Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Complex Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 More on Constitute Relations, Uniform Plane Wave63

7.1 More on Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.1 Isotropic Frequency Dispersive Media . . . . . . . . . . . . . . . . . . 63

7.1.2 Anisotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.3 Bi-anisotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.4 Inhomogeneous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.5 Uniaxial and Biaxial Media . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.6 Nonlinear Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Wave Phenomenon in the Frequency Domain . . . . . . . . . . . . . . . . . . 67

7.3 Uniform Plane Waves in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 Lossy Media, Lorentz Force Law, Drude-Lorentz-Sommerfeld Model 73

8.1 Plane Waves in Lossy Conductive Media . . . . . . . . . . . . . . . . . . . . . 73

8.2 Lorentz Force Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3 Drude-Lorentz-Sommerfeld Model . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3.1 Frequency Dispersive Media . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3.2 Plasmonic Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9 Waves in Gyrotropic Media, Polarization83

9.1 Gyrotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2 Wave Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2.1 Arbitrary Polarization Case and Axial Ratio . . . . . . . . . . . . . . 89

9.3 Polarization and Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Contentsiii

10 Spin Angular Momentum, Complex Poynting's Theorem, Lossless Condi-

tion, Energy Density93

10.1 Spin Angular Momentum and Cylindrical Vector Beam . . . . . . . . . . . . 93

10.2 Complex Poynting's Theorem and Lossless Conditions . . . . . . . . . . . . . 95

10.2.1 Complex Poynting's Theorem . . . . . . . . . . . . . . . . . . . . . . . 95

10.2.2 Lossless Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.3 Energy Density in Dispersive Media . . . . . . . . . . . . . . . . . . . . . . . 97

11 Transmission Lines101

11.1 Transmission Line Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.1.1 Time-Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.1.2 Frequency-Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . 105

11.2 Lossy Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

12 More on Transmission Lines109

12.1 Terminated Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 109

12.1.1 Shorted Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12.1.2 Open terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12.2 Smith Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12.3 VSWR (Voltage Standing Wave Ratio) . . . . . . . . . . . . . . . . . . . . . . 116

13 Multi-Junction Transmission Lines, Duality Principle121

13.1 Multi-Junction Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . 121

13.1.1 Single-Junction Transmission Lines . . . . . . . . . . . . . . . . . . . . 121

13.1.2 Two-Junction Transmission Lines . . . . . . . . . . . . . . . . . . . . . 122

13.1.3 Stray Capacitance and Inductance . . . . . . . . . . . . . . . . . . . . 126

13.2 Duality Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

13.2.1 Unusual Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

13.2.2 Fictitious Magnetic Currents . . . . . . . . . . . . . . . . . . . . . . . 129

14 Re ection and Transmission, Interesting Physical Phenomena133

14.1 Re

ection and Transmission|Single Interface Case . . . . . . . . . . . . . . . 133

14.1.1 TE Polarization (Perpendicular or E Polarization)

1. . . . . . . . . . . 134

14.1.2 TM Polarization (Parallel or H Polarization) . . . . . . . . . . . . . . 136

14.2 Interesting Physical Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . 136

14.2.1 Total Internal Re

ection . . . . . . . . . . . . . . . . . . . . . . . . . . 137

15 Interesting Physical Phenomena143

15.1 More on Interesting Physical Phenomena, Homomorphism, Plane Waves, Trans-

mission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

15.1.1 Brewster Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

15.1.2 Surface Plasmon Polariton . . . . . . . . . . . . . . . . . . . . . . . . . 146

15.2 Homomorphism of Uniform Plane Waves and Transmission Lines Equations . 1481

These polarizations are also variously know as thesandppolarizations, a descendent from the notations

for acoustic waves wheresandpstand for shear and pressure waves respectively. ivElectromagnetic Field Theory

15.2.1 TE or TE

zWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

15.2.2 TM or TM

zWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

16 Waves in Layered Media151

16.1 Waves in Layered Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

16.1.1 Generalized Re

ection Coecient for Layered Media . . . . . . . . . . 151

16.2 Phase Velocity and Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . 154

16.2.1 Phase Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

16.2.2 Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

16.3 Wave Guidance in a Layered Media . . . . . . . . . . . . . . . . . . . . . . . . 158

16.3.1 Transverse Resonance Condition . . . . . . . . . . . . . . . . . . . . . 158

17 Dielectric Waveguides161

17.1 Generalized Transverse Resonance Condition . . . . . . . . . . . . . . . . . . 161

17.2 Dielectric Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

17.2.1 TE Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

17.2.2 TM Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

17.2.3 A Note on Cut-O of Dielectric Waveguides . . . . . . . . . . . . . . . 169

18 Hollow Waveguides171

18.1 Hollow Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

18.1.1 Absence of TEM Mode in a Hollow Waveguide . . . . . . . . . . . . . 172

18.1.2 TE Case (Ez= 0,Hz6= 0) . . . . . . . . . . . . . . . . . . . . . . . . 173

18.1.3 TM Case (

E z6= 0,Hz= 0) . . . . . . . . . . . . . . . . . . . . . . . . 175

18.2 Rectangular Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

18.2.1 TE Modes (H Mode orHz6= 0 Mode) . . . . . . . . . . . . . . . . . . 176

19 More on Hollow Waveguides179

19.1 Rectangular Waveguides, Contd. . . . . . . . . . . . . . . . . . . . . . . . . . 179

19.1.1 TM Modes (E Modes orEz6= 0 Modes) . . . . . . . . . . . . . . . . . 179

19.1.2 Bouncing Wave Picture . . . . . . . . . . . . . . . . . . . . . . . . . . 180

19.1.3 Field Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

19.2 Circular Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

19.2.1 TE Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

19.2.2 TM Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

20 More on Waveguides and Transmission Lines189

20.1 Circular Waveguides, Contd. . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

20.1.1 An Application of Circular Waveguide . . . . . . . . . . . . . . . . . . 189

20.2 Remarks on Quasi-TEM Modes, Hybrid Modes, and Surface Plasmonic Modes 194

20.2.1 Quasi-TEM Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

20.2.2 Hybrid Modes{Inhomogeneously-Filled Waveguides . . . . . . . . . . . 195

20.2.3 Guidance of Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

20.3 Homomorphism of Waveguides and Transmission Lines . . . . . . . . . . . . . 196

20.3.1 TE Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

20.3.2 TM Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Contentsv

20.3.3 Mode Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

21 Resonators 203

21.1 Cavity Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

21.1.1 Transmission Line Model . . . . . . . . . . . . . . . . . . . . . . . . . 203

21.1.2 Cylindrical Waveguide Resonators . . . . . . . . . . . . . . . . . . . . 205

21.2 Some Applications of Resonators . . . . . . . . . . . . . . . . . . . . . . . . . 208

21.2.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

21.2.2 Electromagnetic Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 210

21.2.3 Frequency Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

22 Quality Factor of Cavities, Mode Orthogonality215

22.1 The Quality Factor of a Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . 215

22.1.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

22.1.2 Relation to the Pole Location . . . . . . . . . . . . . . . . . . . . . . . 216

22.1.3 Some Formulas forQfor a Metallic Cavity . . . . . . . . . . . . . . . 218

22.1.4 Example: TheQof TM110Mode . . . . . . . . . . . . . . . . . . . . . 219

22.2 Mode Orthogonality and Matrix Eigenvalue Problem . . . . . . . . . . . . . . 220

22.2.1 Matrix Eigenvalue Problem (EVP) . . . . . . . . . . . . . . . . . . . . 220

22.2.2 Homomorphism with the Waveguide Mode Problem . . . . . . . . . . 221

22.2.3 Proof of Orthogonality of Waveguide Modes . . . . . . . . . . . . . . . 222

23 Scalar and Vector Potentials225

23.1 Scalar and Vector Potentials for Time-Harmonic Fields . . . . . . . . . . . . . 225

23.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

23.1.2 Scalar and Vector Potentials for Statics, A Review . . . . . . . . . . . 225

23.1.3 Scalar and Vector Potentials for Electrodynamics . . . . . . . . . . . . 226

23.1.4 More on Scalar and Vector Potentials . . . . . . . . . . . . . . . . . . 228

23.2 When is Static Electromagnetic Theory Valid? . . . . . . . . . . . . . . . . . 229

23.2.1 Quasi-Static Electromagnetic Theory . . . . . . . . . . . . . . . . . . . 234

24 Circuit Theory Revisited237

24.1 Circuit Theory Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

24.1.1 Kirchho Current Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

24.1.2 Kirchho Voltage Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

24.1.3 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

24.1.4 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

24.1.5 Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

24.2 Some Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

24.2.1 Energy Storage Method for Inductor and Capacitor . . . . . . . . . . 244

24.2.2 Finding Closed-Form Formulas for Inductance and Capacitance . . . . 244

24.3 Importance of Circuit Theory in IC Design . . . . . . . . . . . . . . . . . . . 246

24.3.1 Decoupling Capacitors and Spiral Inductors . . . . . . . . . . . . . . . 249

viElectromagnetic Field Theory

25 Radiation by a Hertzian Dipole251

25.1 Radiation by a Hertzian Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . 251

25.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

25.1.2 Approximation by a Point Source . . . . . . . . . . . . . . . . . . . . . 252

25.1.3 Case I. Near Field,r1 . . . . . . . . . . . . . . . . . . . . . . . . 254

25.1.4 Case II. Far Field (Radiation Field),r1 . . . . . . . . . . . . . . 255

25.1.5 Radiation, Power, and Directive Gain Patterns . . . . . . . . . . . . . 255

25.1.6 Radiation Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

26 Radiation Fields, Far Fields261

26.1 Radiation Fields or Far-Field Approximation . . . . . . . . . . . . . . . . . . 261

26.1.1 Far-Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 262

26.1.2 Locally Plane Wave Approximation . . . . . . . . . . . . . . . . . . . 263

26.1.3 Directive Gain Pattern Revisited . . . . . . . . . . . . . . . . . . . . . 265

27 Array Antennas, Fresnel Zone, Rayleigh Distance269

27.1 Linear Array of Dipole Antennas . . . . . . . . . . . . . . . . . . . . . . . . . 269

27.1.1 Far-Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 270

27.1.2 Radiation Pattern of an Array . . . . . . . . . . . . . . . . . . . . . . 270

27.2 When is Far-Field Approximation Valid? . . . . . . . . . . . . . . . . . . . . . 273

27.2.1 Rayleigh Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

27.2.2 Near Zone, Fresnel Zone, and Far Zone . . . . . . . . . . . . . . . . . 276

28 Dierent Types of Antennas{Heuristics277

28.1 Types of Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

28.1.1 Resonance Tunneling in Antenna . . . . . . . . . . . . . . . . . . . . . 277

28.1.2 Horn Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

28.1.3 Quasi-Optical Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 283

28.1.4 Small Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

29 Uniqueness Theorem291

29.1 Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

29.1.1 Isotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

29.1.2 General Anisotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . 294

29.1.3 Hind Sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

29.1.4 Connection to Poles of a Linear System . . . . . . . . . . . . . . . . . 296

29.1.5 Radiation from Antenna Sources . . . . . . . . . . . . . . . . . . . . . 297

30 Reciprocity Theorem299

30.1 Reciprocity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

30.1.1 Conditions for Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . 302

30.1.2 Application to a Two-Port Network . . . . . . . . . . . . . . . . . . . 303

30.1.3 Voltage Sources in Electromagnetics . . . . . . . . . . . . . . . . . . . 304

30.1.4 Hind Sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

30.1.5 Transmit and Receive Patterns of an Antennna . . . . . . . . . . . . . 306

Contentsvii

31 Equivalence Theorem, Huygens' Principle309

31.1 Equivalence Theorem or Equivalence Principle . . . . . . . . . . . . . . . . . 309

31.1.1 Inside-Out Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

31.1.2 Outside-in Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

31.1.3 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

31.1.4 Electric Current on a PEC . . . . . . . . . . . . . . . . . . . . . . . . 311

31.1.5 Magnetic Current on a PMC . . . . . . . . . . . . . . . . . . . . . . . 312

31.2 Huygens' Principle and Green's Theorem . . . . . . . . . . . . . . . . . . . . 312

31.2.1 Scalar Waves Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

31.2.2 Electromagnetic Waves Case . . . . . . . . . . . . . . . . . . . . . . . 315

32 Shielding, Image Theory319

32.1 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

32.1.1 A Note on Electrostatic Shielding . . . . . . . . . . . . . . . . . . . . . 319

32.1.2 Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

32.2 Image Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

32.2.1 Electric Charges and Electric Dipoles . . . . . . . . . . . . . . . . . . 322

32.2.2 Magnetic Charges and Magnetic Dipoles . . . . . . . . . . . . . . . . . 325

32.2.3 Perfect Magnetic Conductor (PMC) Surfaces . . . . . . . . . . . . . . 327

32.2.4 Multiple Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

32.2.5 Some Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

33 High Frequency Solutions, Gaussian Beams331

33.1 High Frequency Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

33.1.1 Tangent Plane Approximations . . . . . . . . . . . . . . . . . . . . . . 331

33.1.2 Fermat's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

33.1.3 Generalized Snell's Law . . . . . . . . . . . . . . . . . . . . . . . . . . 334

33.2 Gaussian Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

33.2.1 Derivation of the Paraxial/Parabolic Wave Equation . . . . . . . . . . 335

33.2.2 Finding a Closed Form Solution . . . . . . . . . . . . . . . . . . . . . 336

33.2.3 Other solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

34 Rayleigh Scattering, Mie Scattering339

34.1 Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

34.1.1 Scattering by a Small Spherical Particle . . . . . . . . . . . . . . . . . 341

34.1.2 Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . 342

34.1.3 Small Conductive Particle . . . . . . . . . . . . . . . . . . . . . . . . . 344

34.2 Mie Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

34.2.1 Optical Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

quotesdbs_dbs7.pdfusesText_13
[PDF] electromagnetic lagrangian field theory

[PDF] electronic cigarette

[PDF] electronic cigarette or cigarette

[PDF] electronic cigarette report

[PDF] electronic cigarette vs cigarette

[PDF] electronic configuration of d and f block elements

[PDF] electronic health record

[PDF] electronic health records germany

[PDF] electronic health records international

[PDF] electronic proportional valve

[PDF] électrostatique et magnétostatique 22 exercices corrigés

[PDF] electrostatique et magnétostatique 22 exercices corrigés pdf

[PDF] electrostatique pdf cours

[PDF] electrostatique pdf l1

[PDF] electrostatique pdf mpsi