[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices





Previous PDF Next PDF



Séries numériques

Montrer que la suite de terme général converge et calculer sa somme. Allez à : Correction exercice 15. Exercice 16. Etudier la convergence des séries de 



Polycopié dexercices et examens résolus: Mécanique du point

Caractériser le vecteur vitesse de la balle lors de son impact sur le sol. Corrigé : 1. La méthode est rigoureusement la même que pour l'exercice de 



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Statistiques descriptives et exercices

Rappels de cours et exercices corrigés sur la statistique descriptive. Abdennasser Chekroun représentation graphique et le calcul de résumés numériques.



Exercices corrigés Initiation aux bases de données

Correction de l'exercice 2. A ne peut pas être clé de R car la valeur a1 de A se répètent dans la relation R. De même pour. B (b1) et C (c2).



Sciences de gestion - Synthèse de cours exercices corrigés

de cours exercices corrigés. Éric DOR. &. Économétrie. Cours et exercices adaptés Il est alors possible de calculer les taux de réaction des variables ...



Cours danalyse 1 Licence 1er semestre

7 Corrigé des exercices le cadre de ce cours. ... valeur approchée (utilisée dans le calcul numérique) d'un nombre réel aussi bonne qu'elle.



Feuille dexercices 10 Développements limités-Calculs de limites

Correction exercice 4. On vérifiera à chaque fois qu'il s'agit de forme indéterminée. La technique est plus ou moins toujours pareil on calcul un 



Recueil dexercices corrigés en INFORMATIQUE I

Corrigés des exercices : Architecture de l'ordinateur Exercice 1 : ... La mémoire morte est le lieu de stockage des programmes en cours d'exécution et ...



FINALE FASCICULE MATHS 3EME ok

d'exercices de Mathématiques En indiquant le détail des calculs écrire D et E sous la forme de ... Calculer la valeur numérique de E pour x = -1.

Exercices Corriges

Matrices

Exercice 1{Considerons les matrices a coecients reels :

A= 2 1

2 1! ; B= 1 2 24!
C=0 B @1 1 2 1 0 1 11 01 C

A; D=0

B @11 1 1 0 1

0 1 01

C

A; E= 11 1

1 0 1!

Si elles ont un sens, calculer les matricesAB,BA,CD,DC,AE,CE.

Exercice 2{(extrait partiel novembre 2011)

On considere les matrices a coecients reels :

A= 1 1

1 1!

B= 431

2 1 1!

C= 1 2

12! Calculer, s'ils ont un sens, les produitsAB;BA;AC;CA;B2. Exercice 3{On considere les matrices a coecients reels :

A= 1 3

2 4!

B= 431

2 1 1!

C= 43 2 1!

1) Calculer s'ils ont un sens les produitsAB;BA;AC;CA;BC;CB;B2.

2) En deduire, sans plus de calcul, queAetCsont inversibles et preciser leurs inverses.

Exercice 4{SoitAla matrice deM2(R) etBla matrice deM2;3(R) denies par :

A= 4 3

1 1! ; B= 1 0 2 1 11! Si elles ont un sens, calculer les matricesAB,BA,A2,B2etA+ 2Id2.

Exercice 5{SoitA;B;Cles matrices :

A= 22 0

4 22!

2M2;3(R); B=0

B @1 1 1 2 131
C

A2M3;2(R); C= 11

1 2!

2M2;2(R)

Determiner les produits denis 2 a 2 de ces trois matrices. Exercice 6{Ti;j() etant la matrice elementaire qui correspond a ajouter a la ligneile produit parde la ligne j, preciser la matriceT2;1(12 ) deM2;2(R), puis la matriceT1;2(2)T2;1(12 1 Exercice 7{1) Preciser les matrices elementaires deM3;3(R) : D

2(2); T3;2(3); T2;1(2):

2) Calculer la matriceA=T3;2(3)D2(2)T2;1(2).

3) DonnerA1sous forme de produit de matrices elementaires. Puis, calculerA1.

Exercice 8{Appliquer avec precision aux matricesMetNsuivantes l'algorithme du cours qui determine si une matrice est inversible et donne dans ce cas son inverse : M= 23 11!

2M2;2(R)et N= 23

46!

2M2;2(R):

Exercice 9{(extrait partiel novembre 2011)

1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et preciser

son inverse :

A= 1 2

3 4!

2) Puis, donner une expression deA1et deAcomme produit de matrices elementaires.

Exercice 10{1) Appliquer avec precision l'algorithme du cours pour inverser la matrice : M= 11 23!

2M2;2(R):

2 ) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

Exercice 11{) Appliquer avec precision l'algorithme du cours pour inverser la matrice :

M= 2 1

3 2!

2M2;2(R):

Preciser une expression deM1, puis deMcomme produit de matrices elementaires. Exercice 12{SoitAetBdeux matrices carrees de m^eme ordre, on suppose que la matrice ABest inversible d'inverse la matriceC. Montrer alors queBest inversible et preciserA1.

Exercice 13{(extrait partiel novembre 2011)

SoitXetYdeux matrices carrees non nulles de m^eme taille a coecients reels, montrer que siXY= 0, les matricesXetYne sont pas inversibles.

Exercice 14{SoitM=0

B @2 4 1 2 5 1

1 2 11

C A.

1) Montrer en appliquant les algorithmes du cours queMest inversible. Preciser la matrice

M

1ainsi que la decomposition deM1comme produit de matrices elementaires.

2

2) En deduire une decomposition deMcomme produit de matrices elementaires.

3) Montrer que nous avons aussiM=T2;3(1)T1;3(1)T3;1(1)T2;1(1)T1;2(2).

4) En deduire une deuxieme expression deM1comme produit de matrices elementaires.

5) Calculer det(M) et retrouver la valeur deM1en utilisant la formule d'inversion donnee

dans le cours.

Exercice 15{(extrait partiel novembre 2009)

1) Appliquer avec precision l'algorithme du cours pour determiner l'inverseM1de la matrice :

M=0 B @1 2 3 0 1 2

0 4 61

C

A2M3;3(R):

Quelle est la valeur deM1?

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Deduire de la question 1 une matriceXdeM3;3(R)telle que :

2XM=0 B @1 0 0 0 1 0 02 11 C A: Exercice 16{1) Appliquer avec precision l'algorithme du cours pour determiner l'inverse M

1de la matrice :

M=0 B @1 2 3 0 1 1

0 2 31

C

A2M3;3(R):

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Verier le calcul en eectuant les calculs des matricesMM1etM1M.

Exercice 17{SoitMla matrice deM3(R) denie par :

M=0 B @1 01 2 3 4

0 1 11

C A:

1) Calculer le determinant deM, sa comatrice et l'inverse deM.

2) Determiner l'inverse deMsous forme de produit de matrices elementaires. EcrireMcomme

produit de matrices elementaires.

3) Resoudre a l'aide de l'inverse deMle systeme suivant oumest un reel xe :

(m)2 6 4x 1x3=m

2x1+ 3x2+ 4x3= 1

+x2+x3= 2m: 3

Correction de l'exercice 1 :

Le lecteur veriera que :

AB= 0 0

0 0! ; BA= 6 3 126!
CD=0 B @0 1 2 1 0 1 21 01
C

A; DC=0

B @123 2 0 2

1 0 11

C

A; AE= 12 3

12 3! Le produitCEn'a pas de sens car la taille des colonnes (a savoir 2) deEest dierent de la taille des lignes (a savoir 3) deC.

Correction de l'exercice 2 :

On trouve :

AB= 22 0

22 0!

AC= 0 0

2 0!

CA= 3 3

33!

Les deux autres produitsB2etBAn'ont pas de sens.

Correction de l'exercice 3 :

1)

AB= 2 0 2

02 2! BAn'a pas de sens car la taille des lignes deBn'est pas egale a celle des colonnes deA.

AC= 2 0

02! =2Id2:

CA= 2 0

02! =2Id2:

CB= 22157

10 7 3!

BCn'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deC. B

2n'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deB.

2) Nous avons :AC=CA=2Id2, nous en deduisons :

A(12

C) = (12

C)A= Id2:

Il en resulte que la matriceAest inversible, d'inverse : A 1=12

C= 232

112
4

De m^eme :

(12

A)C=C(12

A) = Id2:

Il en resulte que la matriceCest inversible, d'inverse : C 1=12 A= 12 32
12!

Correction de l'exercice 4 :

AB= 7 311

2 13!

La matriceBAn'a pas de sens.

A

2=AA= 139

32!

La matriceB2n'a pas de sens.

A+ 2Id2= 4 3

1 1! + 2 1 0 0 1! = 2 3 1 3!

Correction de l'exercice 5 :

AB= 02

4 14! ; BA=0 B @6 02 10 24

108 61

C

A; CA= 24 2

10 24!

BC=0 B @2 1 3 3 271
C

A; C2= 03

3 3!

Les matricesAC,CB,A2etB2ne sont pas denis.

Correction de l'exercice 6 :

T

2;1(12

) =T2;1(12 )I2=T2;1(12 ) 1 0 0 1! = 1 0 12 1! De m^eme, en utilisant les proprietes des actions a gauche par les matrices elementaires, on obtient : T

1;2(2)T2;1(12

) =T1;2(2) 1 0 12 1! = 02 12 1!

Correction de l'exercice 7 :

1.1) 5 D

2(2) =D2(2)I3=D2(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 02 0

0 0 11

C A: T

3;2(3) =T3;2(3)I3=T3;2(3)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 0 1 0

0 3 11

C A: T

2;1(2) =T2;1(2)I3=T2;1(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 2 1 0

0 0 11

C A: 1.2)

A=T3;2(3)D2(2)T2;1(2) =T3;2(3)D2(2)0

B @1 0 0 2 1 0

0 0 11

C A:

A=T3;2(3)0

B @1 0 0 42 0

0 0 11

C A: A=0 B @1 0 0 42 0

126 11

C A: 1.3) 6 A

1= (T3;2(3)D2(2)T2;1(2))1

=T2;1(2)1D2(2)1T3;2(3)1 =T2;1(2)D2((1=2))T3;2(3) =T2;1(2)D2((1=2))T3;2(3)0 B @1 0 0 0 1 0

0 0 11

C A =T2;1(2)D2((1=2))0 B @1 0 0 0 1 0 03 11 C A =T2;1(2)0 B @1 0 0

0(1=2) 0

03 11 C A 0 B @1 0 0

2(1=2) 0

03 11 C A:

Correction de l'exercice 8 :

a) Les deux lignes deMsont d'ordre 1. Donc,Mest ordonnee. M

1=T2;1(12

)M= 23 0 12 B

1=T2;1(12

)I2= 1 0 12 1! B 1M=M1 La matriceM1est triangulaire (on dit aussi echelonnee). La premiere phase de l'algorithme est terminee. Les elements de la diagonale deMetant non nuls, on peut conclure queMest inversible. M

2=D2(2)M1= 23

0 1! B

2=D2(2)B1= 1 0

1 2! B 2M=M2 M

3=D1(12

)M2= 132 0 1! B

3=D1(12

)B2= 12 0 1 2! B 3M=M3 M

4=T1;2(32

)M3= 1 0 0 1! =I2B4=T1;2(32 )B3= 1 3 1 2! B

4M=M4=I2

On obtient donc :

M

1=B4= 1 3

1 2!

Soit encore en remontant les calculs :

M

1=T1;2(32

)D1(12 )D2(2)T2;1(12 7 b) Les deux lignes deNsont d'ordre 1. Donc,Nest ordonnee. N

1=T2;1(2)N= 23

0 0! B

1=T2;1(2)I2= 1 0

2 1! B 1N=N1 La matriceN1est triangulaire (on dit aussi echelonnee). La premiere phase de l'algorithme est terminee. Une ligne deN1est constituee de 0. La matriceNn'est donc pas inversible.

Correction de l'exercice 9 :

1) On a :

T

2;1(3)A= 1 2

02! D

2(1=2)T2;1(3)A= 1 2

0 1! T

1;2(2)D2(1=2)T2;1(3)A= 1 2

0 1! =I2

Ainsi,Aest inversible et

A

1=T1;2(2)D2(1=2)T2;1(3) =T1;2(2)D2(1=2)T2;1(3) 1 0

0 1! Soit A

1=T1;2(2)D2(1=2) 1 0

3 1! A

1=T1;2(2) 1 0

3=21=2!

A

1= 2 1

3=21=2!

2) On a vu :

A

1=T1;2(2)D2(1=2)T2;1(3):

Il en resulte :

quotesdbs_dbs21.pdfusesText_27
[PDF] calcul numérique fraction PDF Cours,Exercices ,Examens

[PDF] calcul numérique mathématiques PDF Cours,Exercices ,Examens

[PDF] calcul numérique pour 4ème Mathématiques

[PDF] calcul numérique seconde PDF Cours,Exercices ,Examens

[PDF] Calcul numérique sur les puissances 3ème Mathématiques

[PDF] Calcul numérique troisième ! 3ème Mathématiques

[PDF] Calcul numérique, littéral et autres 2nde Mathématiques

[PDF] Calcul numérique, littéral et autres 2 2nde Mathématiques

[PDF] calcul numérique/théoréme de Pythagore 3ème Mathématiques

[PDF] calcul numerologie nom prenom PDF Cours,Exercices ,Examens

[PDF] calcul ordonnée ? l'origine droite PDF Cours,Exercices ,Examens

[PDF] calcul ou calcule orthographe PDF Cours,Exercices ,Examens

[PDF] CALCUL PAR méthode d interpolation linéaire 1ère Mathématiques

[PDF] calcul part de marché exemple PDF Cours,Exercices ,Examens

[PDF] calcul part de marché relative matrice bcg PDF Cours,Exercices ,Examens