[PDF] Exercices de Thermodynamique 2) Calculer le volume occupé





Previous PDF Next PDF



«EXERCICES ET PROBLEMES CORRIGES DE

mol-1. Page 46. Exercices et problèmes corrigés de thermodynamique chimique. 53. Exercice II.



Exercices de Thermodynamique

Calculer la pression P dans le récipient et commenter. Reprendre le calcul pour un gaz parfait et commenter. Rép : 2) V = 951.10−4 m3 soit ∣∣.



Examen de Thermodynamique

14 jui. 2022 Corrigé de l'examen de thermodynamique. Exercice n°1 : (5 Points). 1 ... 1 1+ 2 2. 1+ 2. = 01.18+0



Les bases de la thermodynamique. Cours et exercices corriges

De par sa définition même l'univers thermodynamique est isolé. 2. Page 15. 1.1. La notion de système. Exercice d 



THERMODYNAMIQUE. SMA-SMPC.S1. Corrigé du T.D. N°2

THERMODYNAMIQUE. SMA-SMPC.S1. Corrigé du T.D. N°2. Exercice 1 : questions de cours: a) Par définition le travail élémentaire d'une force qui déplace son 



COURS DE THERMODYNAMIQUE

Machines thermodynamiques (T.D)……………………………………….. 62. IV.10.2 initial (1) à l'état final (2) mais en thermodynamique



PROBL`EMES DE THERMODYNAMIQUE (L2) et leurs corrigés

e) Déduire de la question précédente l'expression de TF en fonction de γTD



Cours et exercices résolus De la Thermodynamique Appliquée

Exercice corrigé du chapitre II . 26. 2°/ Calcule de m : La masse molaire d Cycles thermodynamiques. 30. 1→2 : Compression adiabatique du mélange (air ...



TD corrigés de thermodynamique

29 oct. 2011 récipient est percé d'un petit trou d'aire s = 1 µm 2. Calculer le temps au bout duquel la pression a diminué de moitié. On confondra vitesse.



Corrigé de lexamen de rattrapage a. Fournit à lextérieur un travail

4 juil. 2022 Q = 2 KJ et W = -500 J ⇒ ΔU° = Q + W ⇒ ΔU° = +1500 J (1pt) b. Cède ... Thermodynamique. Epreuve : République Algérienne Démocratique et ...



Résumé de cours et exercices corrigés

THERMODYNAMIQUE. RESUMÉ DE COURS ET EXERCICES CORRIGÉS. 2. Ecrire les différentielles dV dP et dT et déduire les formules de Reech suivantes :.



Corrigé type examen thermodynamique 2

UNIVERSITE BATNA 2. FACULTE DE TECHNOLOGIE. DEPARTEMENT DE SCIENCE TECHNOLOGIQUE. 2éme Année Socle Commun ST. Corrigé type examen thermodynamique 2.



Exercices de Thermodynamique

2) Calculer le volume occupé par une mole d'un gaz parfait `a la température de 0?C sous la pression atmosphérique normale. En déduire l'ordre de grandeur de 



«EXERCICES ET PROBLEMES CORRIGES DE

Exercices et problèmes corrigés de thermodynamique chimique. 15. 1. détente isotherme et réversible. 2. détente isotherme et irréversible.



Examen algorithme corrigé pdf usthb mi

univ M'sila EXAMENS auter examen corrige Physique 2 2020 auter examen corrige Thermodynamique Informatique Word PDF Examens et corrigés types - S2 ...



PROBL`EMES DE THERMODYNAMIQUE (L2) et leurs corrigés

II. Un gaz d'équation d'état V = V (TP) a pour coefficient de dilatation thermique TD



THERMODYNAMIQUE Cours et exercices dapplication corrigés

dans un diagramme de CLAPEYRON ( ) et calcul de W



Examen de chimie 02 « Thermodynamique »

Oct 12 2020 Corrigé d'examen de chimie 2. Thermodynamique et cinétique Chimique. Exercice 01 : (08 pts). Détente isotherme. Etat 1. Etat 2.



TD corrigés de thermodynamique

Oct 29 2011 récipient est percé d'un petit trou d'aire s = 1 µm 2. Calculer le temps au bout duquel la pression a diminué de moitié. On confondra vitesse.



SERIE DEXERCICES 25 : THERMODYNAMIQUE : PREMIER

2. Comparer au travail que recevrait un gaz parfait de même volume initial sous la pression P1 lors d'une transformation identique. Exercice 4 : travail reçu 

Exercices de Thermodynamique

Exercices de Thermodynamique

" Ce fut la grande tâche et la grande gloire de la physique du XIX esiècle d"avoir ainsi considérablement précisé et étendu en tous sens notre connais- sance des phénomènes qui se jouent à notre échelle. Non seulement elle a continué à développer la Mécanique, l"Acoustique, l"Optique, toutes ces grandes disciplines de la science classique, mais elle a aussi créé de toutes pièces des sciences nouvelles aux aspects innombrables : la Thermodynamique et la science de l"Électricité. » LouisDe Broglie(1892-1987) -Matière et Lumière, exposés généraux sur la physique contemporaine, 1(1937) ?Syst`emes thermodynamiques T1? ???Ex-T1.1Grandeurs intensives et extensives(äSol. p. 2) Soit une mole d"un gaz occupant une volumeVmsous la pressionPet `a la temp´eratureT.

1)On suppose que ces grandeurs sont li´ees par l"´equation :?

P+a V2m? (Vm-b) =RT, o`ua,b

etRsont des constantes. Utiliser les propri´et´es d"intensivit´e ou d"extensivit´e des grandeurs pour

´etablir l"´equation correspondante relative `anmoles.

2)Mˆeme question pour l"´equation :P(Vm-b) exp?a

RTVm? =RT. ???Ex-T1.2Pour donner du sens au nombre d"Avogadro(äSol. p. 2) On consid`ere du sable fin dont chaque grain occupe un volumeV0= 0,1mm3. Quel est le volume Voccup´e parN= 6.1023grains? Si on ´etendait uniform´ement ce sable sur la France(d"aire S= 550000km2) quelle serait la hauteur de la couche de sable? ?Consid´erations `a l"´echelle microscopique T1? ???Ex-T1.3Vitesse de lib´eration et vitesse quadratique moyenne

1)Calculer num´eriquement `a la surface de la Terre et de la Lune, pour une temp´erature

T= 300K, la vitesse de lib´erationvlet la vitesse quadratique moyenne pour du dihydrog`ene et du diazote. Commenter. Donn´ees :Constante de gravitationG= 6,67.10-11uSI. Rayon terrestreRT= 6,4.106m; masse de la TerreMT= 6.1024kg. Rayon lunaireRL= 1,8.106m; masse de la LuneML= 7,4.1022kg. Masses molaires :M(H2) = 2g.mol-1etM(N2) = 28g.mol-1.

Constante desGP:R= 8,314J.K-1.mol-1.

2)Quel devrait ˆetre l"ordre de grandeur de la temp´eratureTpour que le diazote, constituant

majoritaire de l"atmosph`ere terrestre, ´echappe quantitativement `a l"attraction terrestre? R´ep : 1)Pour l"expression de la vitesse de lib´erationÜCf Cours de M´ecaniqueetDSn05: v l,T?11,2km.s-1etvl,L?2,3km.s-1. de plus :vq(H2)?1,9km.s-1etvq(N2)?0,5km.s-1.

2)Il faudraitTT≂100000K(!)

???Ex-T1.4Densit´e particulaire et volume molaire(äSol. p. 2)

1)calculer le nombre de mol´ecules parcm3dans un gaz parfait `a 27◦Csous une pression de

10 -6atmosph`ere.

2)Calculer le volume occup´e par une mole d"un gaz parfait `a latemp´erature de 0◦Csous la

pression atmosph´erique normale. En d´eduire l"ordre de grandeur de la distance moyenne entre mol´ecules.

Exercices de Thermodynamique2008-2009

Solution Ex-T1.1

1)CommeVm=Vn, on a :

P+a V2m? (Vm-b) =RT??

P+n2aV2??

Vn-b? =RT? P+n2a V2? (V-nb) =nRT Rq :on peut ´ecrire l"´equation d"´etat sous la forme? P+A V2? (V-B) =nRTen posantB=nb etA=n2a. Best une grandeur extensive puisqu"elle est additive, sin=n1+n2,B=nb=n1n+n2b= B

1+B2.Aest aussi une grandeur extensive, mais elle n"est pas additive car sin2a?=n21a+n22a.

2)P(V-nb)exp?na

RTV? =nRT.

Solution Ex-T1.2

Le volume occup´e estV=N.v= 6.1013m3= 6.1016L(60 millions de milliards de litres!) . Ce sable ´etal´e surS= 5,5.105km2= 5,5.1011m2formerait une couche de hauteurh=V

S?110m

Solution Ex-T1.3

1)D"apr`es l"´equation d"´etat du gaz parfait, le nombre de mol´ecules par unit´e de volume est

n ?=N V=PkBT?10-6.1,01325.1051,38.10-23×300?2,5.1019mol´ecules par m`etre cube soitn??2,5.1013 mol´ecules parcm3ou encoren??4.10-11mol.cm-3.

2)Le volume molaire cherch´e est :Vm=RT

V=8,314×273,151,013.105= 22,4.10-3m3= 22,4L.

?Mod´elisations de gaz r´eelsT1? ???Ex-T1.4Dioxyde de carbone

Pour le dioxyde de carbone (" gaz carbonique »), les coefficientsaetbde l"équation d"état deVan

der Waalsont pour valeurs respectives0,366kg.m5.s-2.mol-2et4,29.10-5m3.mol-1. On place deux moles de ce gaz dans une enceinte de volumeV= 1Là la température deT= 300K.

Q :Comparer les pressions données par les équations d"état du gaz parfait et du gaz deVan der

Waals, la valeur exacte étantP= 38,5bars.

Rép :PGP=nRT

V?4,99.106Pa, soit une erreur relative de?

?P-PGP P? ?≈30%;PVdW= nRTV-nb-n2aV2?3,99.106Pa, soit une erreur relative de? ?P-PVdW P? ?≈4%. Le modèle du gaz parfait est donc inacceptable, tandis que le modèle du gaz deVan der Waalsmontre une bien meilleure précision. ???Ex-T1.5Deux r´ecipients Un récipient(A)de volumeVA= 1L, contient de l"air àtA= 15◦Csous une pressionPA=

72cmHg.

Un autre récipient(B)de volumeVB= 1L, contient également de l"air àtB= 20◦Csous une pressionPB= 45atm.

On réunit(A)et(B)par un tuyau de volume négligeable et on laisse l"équilibre se réaliser à

t= 15◦C. On modélise l"air par un gaz parfait de masse molaireM= 29g.mol-1.Données :le "centimètre de mercure» est défini par la relation1atm= 76cmHg= 1,013.105Pa.

Q :Quelle est la pression finale de l"air dans les récipients? Quelle est la masse d"air qui a été

transférée d"un récipient dans l"autre? Indications :Exprimer, initialement, les quantités de matièrenAetnBdans les récipients. En

déduire la quantité de matière totale. L"état final étant un état d"équilibre thermodynamique,

2http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices de Thermodynamique

les variables intensives sont uniformes, dont la densité moléculaire etla pression. En déduire les

quantités de matière finalesnAFetnBF.

Rép :mB→A= 26,1getP?22,5bars?22,2atm.

???Ex-T1.6Point critique et ´equation r´eduite d"un gaz de Van der Waals (*)

1)Une mole de gaz deVan der Waalsa pour équation d"état :?

P+a V2? (V-b) =RT ExprimerPen fonction deTetVet calculer les dérivées partielles :?∂P ∂V? T et?∂2P∂V2? T

2)Montrer qu"il existe un unique état C tel que :?∂P

∂V? T = 0et?∂2P∂V2? T = 0. Déterminer son volume molaireVC, sa températureTCet sa pressionPC.

3)On poseθ=T

TC,ν=VVCet?=PPC.

Montrer que l"équation d"état liantθ,νet?est universelle, c"est à dire qu"elle ne fait plus

intervenir aucune constante dépendant du gaz.

Rép : 1)?∂P

∂V? T =-RT(V-b)2+2aV3et?∂2P∂V2? T =2RT(V-b)3-6aV4 2)C? V

C= 3b;TC=8a

27Rb;PC=a27b2?

-3)? ?+3ν2? (ν-1) = 8θ ???Ex-T1.7Mod´elisations d"un gaz r´eel (*)

1)Le tableau ci-dessous donne avec trois chiffres significatifs exacts le volume molaireV(en

m

3.mol-1) et l"énergie interne molaireU(enkJ.mol-1) de la vapeur d"eau à la température

t= 500◦Cpour différentes valeurs de la pressionP(enbars). On donne en outre la constante des GP :R= 8,314J.K-1.mol-1.

P110204070100

U56,3356,2356,0855,7755,4754,78

Justifier sans calcul que la vapeur d"eau ne se comporte pas comme unGP. On se propose d"adopter le modèle deVan der Waalspour lequel on a, pour une mole de gaz : P+a V2? (V-b) =RTetU=UGP(T)-aV.

Calculer le coefficientaen utilisant les énergies internes des états àP= 1baret àP= 100bars.

Calculerben utilisant l"équation d"état de l"état àP= 100bars. Quelle valeur obtient-on alors pourUàP= 40bars?quotesdbs_dbs2.pdfusesText_2
[PDF] examen corrigé+microéconomie

[PDF] examen cryptographie correction

[PDF] examen cti 0209

[PDF] examen cytobactériologique des crachats fiche technique

[PDF] examen cytobactériologique des liquides d épanchement

[PDF] examen d'admission gymnase vaudois

[PDF] examen d'analyse et de raisonnement déductif

[PDF] examen d'analyse personnel technique

[PDF] examen d'aptitude professionnelle ide 1er grade

[PDF] examen d'aptitude professionnelle ide echelle 10

[PDF] examen d'aptitude professionnelle maroc

[PDF] examen de bacalaureat national 2015 varianta 9

[PDF] examen de bacalaureat national 2016 proba e

[PDF] examen de biologie animale avec correction pdf

[PDF] examen de biologie animale s2 pdf