[PDF] [PDF] Cours de probabilités et statistiques





Previous PDF Next PDF



Comment débuter avec les probabilités en classe de troisième

le lien entre fréquence et probabilité en constatant matériellement le phénomène de stabilisation des fréquences ou en utilisant un tableur pour simuler 



PROBABILITES

La suite de la leçon nous expliquera comment calculer les fréquences théoriques d'une expérience aléatoire. Exercices conseillés En devoir. Exercices conseillés 



Fiche dexercices : probabilités 3

Des élèves de troisième On sait que la probabilité de faire apparaître une bille verte ... On détermine la fréquence d'apparition de la carte pique.



Exercices type brevet Probabilité : Exercice 1 : Un sac contient 20

Il a représenté ci-dessous la fréquence d'apparition des différentes couleurs en fonction du Quelle est la probabilité qu'il gagne a son troisième.



TP 4 : Tableur et Probabilite s

Calculer dans les cellules F1 et F2 les fréquences d'apparition de « Pile » et. « Face ». Appeler le professeur. Simulation de 1000 lancers : 1. Prolonger la 



Effectifs et fréquences Vocabulaire Définitions Caractéristiques de

est 25 car il y a 25 élèves dans cette classe. Exemple : la fréquence de la valeur « football » est de Thème D • Statistiques et probabilités.



Introduire les probabilités devant les élèves: activités « clef en main »

Simulation : utiliser le tableur et les fonctions ALEA.ENTRE.BORNES et NB.SI. On mettra en évidence intuitivement la convergence des fréquences; on constatera 



Cours de probabilités et statistiques

Fréquence : Un enfant est attendu. Quelle est la probabilité que ce soit une fille? On a observé un grand nombre de naissances. Notons kn le nombre de 



MATHÉMATIQUES

(observation de la stabilisation des fréquences) pour disposer d'autres modèles. Lien avec les domaines du socle. L'approche de la notion de probabilité 



Probabilités (cours 3ème)

Quand on répète un grand nombre de fois une expérience aléatoire la fréquence de réalisation d'un évènement devient proche de sa probabilité.



Probabilités : cours de maths en 3ème à télécharger en PDF

Probabilité avec un cours de maths en 3ème sur les événements les issues et le calcul de probabilité Les événements certains contraires



[PDF] PROBABILITES - maths et tiques

La suite de la leçon nous expliquera comment calculer les fréquences théoriques d'une expérience aléatoire Exercices conseillés En devoir Exercices conseillés 



[PDF] Probabilités (cours 3ème) - Epsilon 2000

Quand on répète un grand nombre de fois une expérience aléatoire la fréquence de réalisation d'un évènement devient proche de sa probabilité



[PDF] Comment débuter avec les probabilités en classe de troisième

27 mai 2018 · Ils construisent chacun un tableau pour calculer les fréquences de chaque occurrence plat et côté pour chaque pièce En fin de lancer chaque 



Probabilités : cours de maths en 3ème à télécharger en - Mathovore

Les probabilités dans un cours de maths en 3ème avec la définition d'une probabilité et la notion d'ensemble et d'expérience aléatoire



[PDF] Probabilités : cours de maths en troisième (3ème)

Pour le dé de Katia l'événement "obtenir un nombre pair" et l'éénement "obtenir le 3" sont incompatibles 3 Des fréquences aux probabilités Lorsque aucune 



3eme : Probabilité

Ce quotient est appelé probabilité de l'événement Probabilité et fréquence Quelle est la probabilité d'obtenir un nombre inférieur à 5 ?



[PDF] Cours de probabilités et statistiques

Quand le nombre d'essais augmente les fréquences observées sont de plus en plus proches des valeurs théoriques données par la loi de probabilité (preuve plus 



[PDF] 3ème soutien N°24 probabilités - Collège Anne de Bretagne

SOUTIEN : PROBABILITES EXERCICE 1 : On écrit sur les faces d'un dé à six faces chacune des lettres du mot OISEAU On lance ce dé et on regarde la lettre 

  • Quelle est la différence entre la fréquence et la probabilité ?

    Fréquence n'est pas probabilité. Une fréquence est une proportion d'observations; une probabilité est la mesure d'une incertitude sur un événement. Mais d'un point de vue formel, fréquences et probabilités sont l'une et l'autre des mesures positives de masse totale unité.
  • Comment calculer des probabilités dans des expériences aléatoires simples ?

    Les expériences aléatoires à une étape
    Réponse : La probabilité de piger une bille verte est de 36, soit 12. 1 2 . Lorsqu'un évènement est composé de plusieurs résultats favorables (évènement A ou évènement B ), il suffit d'additionner la probabilité de chaque résultat pour déterminer la probabilité de l'évènement.
  • On peut représenter la situation par un arbre. Chaque parcours représente une issue possible : on peut par exemple tirer une rouge puis une autre rouge, ou une verte puis une rouge, etc… Ensuite, on complète cet arbre avec les probabilités de tirer une verte ou une rouge à chaque tirage.

Stage ATSM - Ao^ut 2010

Cours de probabilit

´es et statistiques

A. Perrut

contact : Anne.Perrut@univ-lyon1.fr 2

Table des matiµeres

1 Le modµele probabiliste 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Trois autres lois discrµetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Loi de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Loi d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 La loi normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 La loi exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Fonction d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Intervalles de con¯ance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3

4TABLE DES MATIµERES

5 Tests statistiques 47

5.1 Tests d'hypothµeses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Test d'ajustement du chi-deux . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B Tables statistiques 61

C.1 Variable quantitative discrµete . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C.2 Variable quantitative continue . . . . . . . . . . . . . . . . . . . . . . . . . . 68 C.3 Variable qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapitre 1

Le modµele probabiliste

1.1 Introduction

Exemples :

- l'enfant µa na^³tre sera une ¯lle, - Proportion :

P(A) =3

6 = 1=2. Alors

P(¯lle) = limn!+1k

n n mais cette limite a-t-elle un sens? - Opinion : pour que l'OL soit championne de France? Dans ce cas, on ne peut pas rejouer le m^eme subjectif. 5

6CHAPITRE 1. LE MODµELE PROBABILISTE

Exemples :

\Lyon ne gagne pas". chi®re pair", ieA=f2;4;6g. jcelui du second.

B: \on obtient pile au deuxiµeme lancer" est

B=f(f;p;f);(f;p;p);(p;p;f);(p;p;p)g

le nombre de \face" obtenus. Alors, =f0;1;2;3g. Le modµele est beaucoup plus simple, notations vocabulaire ensembliste vocabulaire probabiliste ensemble plein ensemble vide A sous-ensemble de !2A !appartient µaA

A½B

Ainclus dansB

AimpliqueB

A[B AouB A\B intersection deAetB AetB A cou A A\B=;

AetBdisjoints

AetBincompatibles

Exemple : soit =f0;1;2g. ConstruisonsP().

P() =n

;;f0g;f1g;f2g;f0;1g;f0;2g;f1;2g;o telle que : -P(A) =X -P() =X !2P(!) = 1

0.95 :Ava trµes probablement se produire.

4.0 : incorrect.

-2 : incorrect.

0.5 : une chance sur deux.

8CHAPITRE 1. LE MODµELE PROBABILISTE

faire quelques calculs :

1) SiAetBsont incompatibles,P(A[B) =P(A) +P(B).

2)P(Ac) = 1¡P(A).

3)P(;) = 0.

5)P(A[B) =P(A) +P(B)¡P(A\B).

2) CommeAetAcsont incompatibles,1 =P() =P(A[Ac) =P(A) +P(Ac).

3)P(;) = 1¡P(;c) = 1¡P() = 0.

P i2NA i´ =X i2NP(Ai) - axiome 3 :P() = 1

1 =P() =X

!2P(!) =X !2p=p£card()

D'oµup=P(!) =1

card()

P(A) =X

!2AP(!) =card(A) card() dire : - choisir, par

P(BjA) =P(A\B)

P(A) Utilisation 2 : QuandP(BjA)etP(A)sont faciles µa trouver, on peut obtenirP(A\B). Exemple 6Une urne contientrboules rouges etvboules vertes. On en tire deux, l'une =frouge;verteg £ frouge;verteg rouge".

P(A\B) =P(BjA)P(A) =r¡1

r+v¡1¢r r+v

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

10CHAPITRE 1. LE MODµELE PROBABILISTE

preuve : CommeA[Ac= ,P(B) =P(B\(A[Ac)) =P((B\A)[(B\Ac)). OrB\A

P(B) =P(B\A) +P(B\Ac)

On garde le m^eme formalisme.

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

r¡1 r+v¡1¢r r+v+r r+v¡1¢v r+v =r r+v (i)[i2IAi= (ii) lesAisont deux µa deux incompatibles : pour tousi6=j,Ai\Aj=;.

P(B) =X

i2IP(BjAi)P(Ai) dans l'ordre chronologique. Nous allons maintenant voir une formule µa remonter le temps...

1etP(B)>0. Alors,

P(AjB) =P(BjA)P(A)

P(BjA)P(A) +P(BjAc)P(Ac)

preuve :

P(AjB) =P(A\B)

P(B)=P(BjA)P(A)

P(B) i2I,

P(AijB) =P(BjAi)P(Ai)

P j2IP(BjAj)P(Aj) bleaux sur informatique. Les tableaux deAcomportent des fautes dans 5,2% des cas et ceux deBdans 6,7% des cas. On prend un tableau au hasard. Il comporte des fautes. T T

F=\ le tableau comporte des fautes".

P(TAjF) =P(FjTA)P(TA)

P(FjTA)P(TA) +P(FjTB)P(TB)

P(A\B) =P(A)P(B)

P(BjA) =P(B)()P(AjB) =P(A)()P(A\B) =P(A)P(B)

Proposition 14Soit =E£FoµuEest de cardinalnetFde cardinalp. Supposons que

P(!) =P((x;y)) =1

card() =1 np =PE(fxg)PF(fyg) =fP;Fg £ f1;:::;6g

12CHAPITRE 1. LE MODµELE PROBABILISTE

8!2; P(!) =1

card() = 1=12 P N³ (!1;:::;!N)´ =P(!1)¢¢¢P(!N) surN. Pourtant, le nombre de combinaisons dont la somme fait 12 est le m^eme que le nombre de combinaisons dont la somme fait 11. Alors?

1.6 Exercices

3) On tire trois cartes dans un jeu .

suppose que

P(A[B) = 7=8; P(A\B) = 1=4; P(A) = 3=8:

CalculerP(B),P(A\Bc),P(B\Ac).

ros impairs ont chacun la m^eme chance d'appara^³tre, chance qui est deux fois plus grande hasard, et l'on observe que les quatre places libres se suivent. Est-ce surprenant?

1.6. EXERCICES13

Exercice 6 {SoientM1,M2,M3trois personnes. La premiµereM1dispose d'une infor- la transmet µaM3. Malheureusement, µa chaque fois que l'information est transmise, il y a le bon message? Et siM3transmet l'information dont il dispose µa une quatriµeme personneM4, quelle est elle re»coit un vaccin? daire? Exercice 8 |Dans une usine, la machine A fabrique 60% des piµeces, dont 2% sont C? Exercice 9 |Dans une jardinerie : 25% des plantes ont moins d'un an, 60% ont de 1 µa 2 ans, 25% ont des °eurs jaunes, 60% ont des °eurs roses, 15% ont des °eurs jaunes et moins d'un an, 3% ont plus de 2 ans et n'ont ni °eurs jaunes, ni °eurs roses. 15% de celles qui ont de 1 µa 2 ans, ont des °eurs jaunes, 15% de celles qui ont de 1 µa 2 ans, n'ont ni

°eurs jaunes ni °eurs roses. On suppose que les °eurs ne peuvent pas ^etre µa la fois jaunes

et roses. On choisit une plante au hasard dans cette jardinerie.

14CHAPITRE 1. LE MODµELE PROBABILISTE

Exercice 10 |Deux chau®eurs de bus se relaient sur la m^eme ligne. Lors d'une grµeve, le premier a60%de chances de faire grµeve et le second80%. Pendant la prochaine grµeve, Exercice 11 |Une loterie comporte 500 billets dont deux seulement sont gagnants.

Chapitre 2

PPP PPF PFP FPP FFP FPF PFF FFF

valeur deX

3 2 2 2 1 1 1 0

k(valeur prise parX)

3 2 1 0

fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg k(X=k) = 15 elle est ditecontinue(exemples : hauteur d'un arbre, distance de freinage d'une voiture souvent une formule, plut^ot qu'une liste. [X= 3] [X= 2] [X= 1] [X= 0] fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg

1/8 3/8 3/8 1/8

F(x) =P[X·x]

Exemple :Xest le nombre de Face quand on lance trois fois une piµece. On a vu que la loi deXest P[X= 0] = 1=8; P[X= 1] =P[X= 2] = 3=8; P[X= 3] = 1=8

D'oµu,

F(x) =8

>>>>>:0six <0;

1=8si0·x <1;

4=8si1·x <2;

7=8si2·x <3;

1six¸3

1)Fest croissante,

3) lim x! ¡1F(x) = 0;limx!+1F(x) = 1

E[X] =X

kkP[X=k] oµu on somme sur toutes les valeurskque peut prendreX.

E[g(X)] =X

kg(k)P[X=k] preuve : observons queg(X) =yssiX=xavecg(x) =y. Ainsi,

P(g(X) =y) =X

x:g(x)=yP(X=x)quotesdbs_dbs5.pdfusesText_9
[PDF] formulaire 2041 gr

[PDF] boi-ir-rici-280-30-10

[PDF] boi ir rici 280 disponible sur impots gouv fr

[PDF] 2041 gr 2017

[PDF] formulaire declaration impots 2016

[PDF] guide du contribuable 2017 pdf

[PDF] réduction de gauss matrice

[PDF] réduction de gauss forme quadratique exercice corrigé pdf

[PDF] signature forme quadratique

[PDF] frequence genotypique definition

[PDF] réduction des endomorphismes et des matrices carrées

[PDF] moyenne rapport couple 25 ans

[PDF] frequence rapport couple 60 ans

[PDF] frequence 2m tnt

[PDF] sujet concours reduction endomorphisme