[PDF] [PDF] Limites des Suites numériques I Limite finie ou infinie dune suite





Previous PDF Next PDF



LIMITE DUNE SUITE

2.3 PASSAGE À LA LIMITE DANS UNE INÉGALITÉ ET OPÉRATION INVERSE. Théorème (Limites et inégalités strictes) Soient (un)n? une suite réelle possédant une 



LES SUITES (Partie 1)

= 0. II. Opérations sur les limites. Vidéo https://youtu.be/v7hD6s3thp8. 1) Limite d 



Suites numériques - limites

Lorsque la suite (xn)n?N n'admet pas de limite on dit qu'elle est divergente. Page 5. Suites numériques - limites opérations dans R ? {+?



I. Limite dune suite .............................................. 2 II. Opérations sur ...

I.1 Limite finie (convergence) et divergence . Opérations sur les limites . ... Rappel : notion de limite d'une suite à partir d'exemples (pas de ...



Limite dune suite. Suites convergentes

vn=l . 3. Opérations sur les limites. Les règles opératoires sur les limites de suites sont les mêmes que celles pour les limites 



Limites des Suites numériques I. Limite finie ou infinie dune suite

Opérations sur les limites. Comportement à l'infini de la suite ( qn ) q étant un nombre réel. Suite majorée



Limite de suites

III Limites usuelles. 2. IV Opérations sur les limites. 2. V Formes indéterminées. 3. VI Limite par encadrement. 4. VIILimite et variations.



Les suites - Partie II : Les limites

Souvent pour calculer des limites on s'appuie sur des limites de suites usuelles que l'on connaît et on applique des opérations sur celles-ci.



Limites de suites comparaisons et opérations Exercice 4. Soit (un

Feuille d'exercices 4 : Limites de suites comparaisons et opérations. Exercice 1. Donner la limite des suites suivantes (si elle existe ; sinon on 



Chapitre 1 Suites réelles et complexes

Pour voir que la réciproque est fausse il suffit de considérer la suite un = (?1)n



[PDF] Les suites - Partie II : Les limites

Souvent pour calculer des limites on s'appuie sur des limites de suites usuelles que l'on connaît et on applique des opérations sur celles-ci



[PDF] LIMITE DUNE SUITE - Christophe Bertault

2 2 OPÉRATIONS SUR LES LIMITES Soient (un)n? et (vn)n? deux suites réelles ??? ? et ? ? On suppose dans tout ce paragraphe que les limites



[PDF] Partie 1 : Limite dune suite - maths et tiques

Méthode : Calculer la limite d'une suite à l'aide des formules d'opération Vidéo https://youtu be/v7hD6s3thp8 Calculer les limites : a) lim



[PDF] Limites des Suites numériques I Limite finie ou infinie dune suite

Opérations sur les limites Comportement à l'infini de la suite ( qn ) q étant un nombre réel Suite majorée minorée bornée Étudier la limite d'une 



[PDF] Terminale S - Etude dune limite de suite - Parfenoff org

I) Limites de suite usuelle 1) Suites de référence de limites finies II) Opérations et limites Exemple 1 : Déterminer la limite de la suite =



[PDF] LIMITES DE SUITES - Maths91fr

Limite finie : suite convergente II Opérations sur les limites On dit alors que la suite u converge vers l et que l est la limite de u 



[PDF] Limite de suites - Mathparadise mathématiques au lycée

III Limites usuelles 2 IV Opérations sur les limites 2 V Formes indéterminées 3 VI Limite par encadrement 4 VIILimite et variations



[PDF] Suites numériques - limites

Lorsque la suite (xn)n?N n'admet pas de limite on dit qu'elle est divergente Page 5 Suites numériques - limites opérations dans R ? {+???}



[PDF] Limites de suites comparaisons et opérations Exercice 4 Soit (un

Feuille d'exercices 4 : Limites de suites comparaisons et opérations Exercice 1 Donner la limite des suites suivantes (si elle existe ; sinon on 



[PDF] Limite dune suite - Terminale S Exercices corrigés en vidéo avec le

Limite et suite géométrique Déterminer les limites éventuelles suivantes : lim n?+? 2n ? 3n lim n?+? 2n + 5n 7n Limite de suite et forme 

:

Chapitre 2Terminale S

Limites des

Suites numériques

Ce que dit le programme :

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Limite finie ou infinie

d'une suite.Dans le cas d'une limite infinie, étant donnés une suite croissante ( un ) et un nombre réel A, déterminer à l'aide d'un algorithme un rang à partir duquel un est supérieur à A.Pour exprimer que ( un ) tend vers l quand n tend vers + ∞, on dit que : " tout intervalle ouvert contenant l contient toutes les valeurs un à partir d'un certain rang ».

Pour exprimer que ( un ) tend vers +

∞quand n tend vers + ∞, on dit que : " tout intervalle de la forme ] A, + [ ∞contient toutes les valeurs ( un ) à partir d'un certain rang ». Comme en classe de première, il est important de varier les approches et les outils sur lesquels le raisonnement s'appuie. On présente des exemples de suites qui n'ont pas de limite.

Limites et

comparaison.Démontrer que si ( un ) et ( vn ) sont deux suites telles que : - un est inférieur ou égal à vn à partir d'un certain rang ; - un tend vers + ∞quand n tend vers + ∞; alors vn tend vers +

∞quand n tend vers + ∞.On démontre que si une suite est croissante et admet pour limite l,

alors tous les termes de la suite sont inférieurs ou égaux à l. Le théorème dit " des gendarmes » est admis.

Opérations sur les

limites.

Comportement à l'infini

de la suite ( qn ), q étant un nombre réel.

Suite majorée, minorée,

bornée.Étudier la limite d'une somme, d'un produit ou d'un quotient de deux suites.

Démontrer que la suite ( qn ), avec

q >1, a pour limite +

Déterminer la limite éventuelle d'une suite

géométrique.

Utiliser le théorème de convergence

des suites croissantes majorées.On démontre par récurrence que pour a réel strictement positif et tout

entier naturel n : (1+ a)n ≥1+ na . On peut étudier des situations où intervient la limite de la somme des premiers termes d'une suite géométrique.

Ce théorème est admis.

Il est intéressant de démontrer qu'une suite croissante non majorée a pour limite + ∞. Des exemples de suites récurrentes, en particulier arithmético-géométriques, sont traités en exercice. [Cf FicheBAC01] Des activités algorithmiques sont menées dans ce cadre.

I. Limite finie ou infinie d'une suite

1.1) Limite finie d'une suite

Définition 1. : Soit l un nombre réel donné. On dit que la suite (un) tend vers l quand n tend vers+∞ lorsque : " tout intervalle ouvert contenant l contient toutes les valeurs un à partir d'un certain rang ». On écrit alors limn→+∞ un=l.

Autrement dit :

Définition 2. : Soit l un nombre réel donné. On dit que la suite (un) tend vers l quand n tend vers +∞, lorsque : " pour tout nombre réel strictement positif e (aussi petit soit-il) [lire epsilon], il existe un rang n0, à partir duquel, toutes les valeurs de un sont proches de l à e près ». Cette définition peut encore s'écrire : Pour tout nombre réel e > 0 (aussi petit soit-il), il existe un entier n0 tel que : [si n > n0, alors l - e < un < l + e ].

Term.S - Limites des suites numériques © Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy www.logamaths.fr Page 1/10

Illustration graphique : un=1+(-1)n

n+1, limn→+∞ un=1Limites de référence : (1) limn→+∞1 n=0 ; (2)limn→+∞1 nk=0k > 0 et (3)limn→+∞1

1.2) Limite infinie d'une suite

Définition 1. :

On dit que la suite (un) tend vers

+∞quand n tend vers+∞, lorsque : " tout intervalle ouvert de la forme ]A ; +∞[, contient toutes les valeurs un à partir d'un certain rang ». On écrit alors limn→+∞ un=+∞.

Autrement dit :

Définition 2. :

On dit que la suite (un) tend vers

+∞quand n tend vers+∞, lorsque : " pour tout nombre réel strictement positif A (aussi grand soit-il) il existe un rang n0, à partir duquel, toutes les valeurs de un sont supérieures à A ». Cette définition peut aussi s'écrire : Pour tout nombre réel A > 0 (aussi grand soit-il), il existe un entier n0 tel que [si n > n0, alors un > A ].

Illustration graphique : un=

un=+∞Term.S - Limites des suites numériques © Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy www.logamaths.fr Page 2/10

Limites de référence :

(1) limn→+∞ n=+∞ ; (2)limn→+∞ nk=+∞k > 0 et (3)limn→+∞ qui tend vers -∞quand n tend vers+∞ :

Définition 3. :

On dit que la suite (un) tend vers-∞quand n tend vers+∞, lorsque : " tout intervalle ouvert de la forme ]-∞ ;A [, contient toutes les valeurs un à partir d'un certain rang ». On écrit alors limn→+∞un=-∞.

Autrement dit :

Définition 2. :

On dit que la suite (un) tend vers-∞quand n tend vers+∞, lorsque : " pour tout nombre réel strictement négatif A, il existe un rang n0, à partir duquel, toutes les valeurs de un sont inférieures à A ». Cette définition peut encore s'écrire : Pour tout nombre réel A < 0, il existe un entier n0 tel que [si n > n0, alors un < A ].

Exemple : un=-2n2+3, limn→+∞un=-∞

1.3) Limites des suites arithmétiques et géométriques

Propriété 1. : Soit (un) une suite arithmétique de premier terme u0 et de raison r.

Donc, pour tout

n∈ℕun=rn+u0(fonction affine de coefficient directeur r).

Alors :

•Si r > 0 , alors limn→+∞ un=+∞. •Si r < 0 , alorslimn→+∞un=-∞. •Si r = 0 , alors limn→+∞ un=u0(la suite est constante). Propriété 2. : Soit (vn) une suite géométrique de premier terme v0 >0 et de raison q.

Donc, pour tout

n∈ℕvn=v0qn. Alors : •Si q > 1 , alors limn→+∞ vn=+∞(v0 >0) et limn→+∞ vn=-∞(v0 <0) •Si - 1 < q < 1 , alorslimn→+∞vn=0. •Si q = 1 , alors limn→+∞ vn=v0(la suite est constante). •Siq⩽-1 , alorslimn→+∞vnn'existe pas [Suite alternée dont les termes augmentent indéfiniment en valeur absolue].

Term.S - Limites des suites numériques © Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy www.logamaths.fr Page 3/10

Exemples : 1°)limn→+∞(-2

3)n =0 et 2°) limn→+∞(5 3)n

ALGORITMIQUE : Dans le cas d'une limite infinie (2°), étant donnés une suite croissante (un) et

un nombre réel A, déterminer à l'aide d'un algorithme un rang à partir duquel un est supérieur à A.

1.4) Suites convergentes, suites divergentes

Définition : On dit qu'une suite (un) est convergente si et seulement si elle admet une limite finie l∈ℝ. On dit aussi que la suite converge vers l lorsque n tend vers l'infini. Une suite qui n'est pas convergente est dite divergente. Autrement dit, une suite est dite divergente si et seulement si elle admet une limite infinie ou si elle n'admet pas de limite. Exemples : - Toute suite arithmétique non constante est divergente. -La suite de terme général vn=2×(3 5)n , est convergente vers 0. (vn) est une suite géométrique de raison q=3

5∈]0;1[.-La suite de terme général tn=(-1)nest divergente. C'est une suite qui prend

alternativement les valeurs 1 et - 1. Donc elle ne tend pas vers l'infini et ne peut pas converger vers une valeur finie. Essayez de montrer que (tn) n'admet pas de limite finie à partir de la définition.

II. Opérations sur les limites

Les résultats de certaines opérations sur les limites sont intuitives et parfaitement

déterminées. D'autres opérations mènent à des " formes indéterminées » (indiquées

par F.I.), c'est-à-dire qu'elles conduisent à plusieurs résultats possibles, donc qui ne sont pas parfaitement déterminées. Il faudra alors user de différentes méthodes et techniques pour transformer l'écriture de la suite et " lever l'indétermination ». Notamment, factoriser une somme, développer un produit, séparer une fraction en plusieurs parties, ou multiplier le numérateur et le dénominateur par la quantité conjuguée. Nous pouvons résumer les opérations sur les limites des suites dans les quatre tableaux suivants :

2.1) Addition et soustraction

Soient (un) et (vn) deux suites de nombres réels. Le tableau suivant donne la limite de la suite (un+ vn) si elle existe : [avec la règle limn→+∞ -vn=-limn→+∞ vnpour la soustraction]

Term.S - Limites des suites numériques © Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy www.logamaths.fr Page 4/10

limn→+∞un=→ limn→+∞vn=↓l-∞+∞ l'l+l'-∞ +∞-∞-∞-∞F.I. +∞F.I.+∞Exemples :

1°) Calculer limn→+∞3n2+

Aucun problème. On a : limn→+∞3n2=+∞, limn→+∞

Conclusion : limn→+∞3n2+

2°) Calculer

limn→+∞

2n2-3n+5=?D'après ce qui précède, on sait que :limn→+∞2n2=+∞et limn→+∞-3n=-∞. Nous avons

donc une F.I. Il faut transformer l'écriture de la suite pour lever l'indétermination. La méthode consiste à " mettre en facteur le monôme de plus haut degré ».

On a alors :

2n2-3n+5=2n2

(1-3n 2n2+5

2n2)=2n2

(1-3 2n+5

2n2)Or,

limn→+∞ -3

2n=0et limn→+∞

5

2n2=0donc limn→+∞(1-3

2n+5

2n2)=1De plus

limn→+∞

2n2=+∞, par multiplication des limites (voir ci-dessous), on obtient :

limn→+∞

2n2-3n+5=+∞CQFD.

2.2) Multiplication

Soient (un) et (vn) deux suites de nombres réels. Le tableau suivant donne la limite de la suite (un vn) lorsqu'elle existe : limn→+∞ un=→limn→+∞vn=↓l≠00-∞+∞l'≠0l l'0 +∞si l' < 0 -∞si l' > 0-∞si l' < 0 +∞si l' > 0

000F.I.F.I.

-∞-∞F.I.

+∞+∞F.I.-∞+∞Term.S - Limites des suites numériques © Abdellatif ABOUHAZIM. Lycée Fustel de Coulanges - Massy www.logamaths.fr Page 5/10

Exemples :

1°) Calculer limn→+∞

Aucun problème.

limn→+∞

Conclusion : limn→+∞

2°) Calculer limn→+∞1

n(5n2+1)=?

On sait que :

limn→+∞ 1 n=0et limn→+∞ (5n2+1)=+∞. Nous avons donc une F.I. Il faut transformer l'écriture de la suite pour lever l'indétermination. Pour cela " on développe l'expression de la suite ».

On a alors :

1 n(5n2+1)=5n2quotesdbs_dbs42.pdfusesText_42
[PDF] convergence d'une suite 1ere s

[PDF] frequence son chauve souris

[PDF] écholocation chauve souris ece

[PDF] cours d acoustique pdf

[PDF] pourquoi la pression de l air change t elle au passage d une onde acoustique

[PDF] tableau ? double entrées

[PDF] exercice réduire une expression littérale

[PDF] réduire une expression littérale avec parenthèses

[PDF] que signifie développer une expression

[PDF] la gran tenochtitlan diego rivera descripcion

[PDF] oxydant définition chimie

[PDF] tres revoluciones diego rivera

[PDF] diego rivera la colonizacion description

[PDF] diego rivera la colonizacion analyse

[PDF] la colonizacion de diego rivera wikipedia