[PDF] [ MPSI – Thermodynamique ] 6 – SECOND PRINCIPE DE LA





Previous PDF Next PDF



Cours de Thermodynamique

Feb 13 2019 La thermodynamique est une branche de la physique qui étudie les systèmes ... libre thermodynamique et qui



COURS DE THERMODYNAMIQUE

thermodynamique les notions et les différentes expressions de l'entropie



Thermodynamique Cours

Mathématiques supérieures et spéciales. Thermodynamique. Cours. Mathématiques supérieures. Mme Sandré II œ LE PREMIER PRINCIPE DE LA THERMODYNAMIQUE.



COURS DE THERMODYNAMIQUE

I.U.T. de Saint-Omer Dunkerque. Département Génie Thermique et énergie. COURS DE THERMODYNAMIQUE. 1 er semestre. Olivier PERROT. 2010-2011.



[ MPSI – Thermodynamique ]

6 – SECOND PRINCIPE DE LA THERMODYNAMIQUE ; ENTROPIE. peut porter sur toutes les valeurs prises par le vecteur vitesse d'une molécule au cours du temps.



Terminale générale - Gaz parfaits et thermodynamique - Fiche de

Gaz parfaits et Thermodynamique – Fiche de cours. 1. Notion de thermodynamique a. Définition. Un système thermodynamique est une partie de l'univers que.



NOTES DE COURS DE THERMODYNAMIQUE Nicolas Pavloff

Thermodynamique Physique par P. Grécias (Technique et documentation Lavoisier 1996). Autres références. Thermodynamics



Cours de Thermodynamique PeiP 2 Polytech Paris

Plan succin du cours. Dans la premi`ere moitié du cours on introduira les nitions fondamentales de la thermodynamique. On dis- cutera d' 



Note de cours de Thermodynamique Chapitre 3

Note de cours de Thermodynamique. Chapitre 3. Chedlia MHEDHBI ép SHILI. Page 18. CHAPITRE 3 : LE PREMIER PRINCIPE DE LA. THERMODYNAMIQUE POUR UN SYSTEME 

[ MPSI – Thermodynamique ]

Sommaire

[ MPSI - THERMODYNAMIQUE ]........................................................................................................................1

1 - INTRODUCTION A LA THERMODYNAMIQUE...........................................................................................3

I DIVERS ETATS DE LA MATIERE................................................................................................................................3

II PRESSION DANS UN FLUIDE EN EQUILIBRE..............................................................................................................3

III DESCRIPTION D"UN SYSTEME PAR DES VARIABLES D"ETAT......................................................................................4

IV EQUILIBRE D"UN SYSTEME...................................................................................................................................4

V TRANSFORMATION D"UN SYSTEME.........................................................................................................................4

VI EQUATION D"ETAT...............................................................................................................................................5

VII COEFFICIENTS THERMOELASTIQUES (OU DE REPONSE) D"UN FLUIDE......................................................................5

2 - PROPRIETES THERMOELASTIQUES DES GAZ.........................................................................................6

I PROPRIETES THERMOELASTIQUES DES GAZ REELS AUX FAIBLES PRESSIONS..............................................................6

II DEFINITION DU GAZ PARFAIT.................................................................................................................................6

III APPLICATIONS DE L"EQUATION D"ETAT DU GAZ PARFAIT........................................................................................6

IV EQUILIBRE DE L"ATMOSPHERE TERRESTRE SUPPOSEE ISOTHERME..........................................................................7

3 - ETUDE CINETIQUE DES GAZ PARFAITS....................................................................................................8

I MODELE DU GPM..................................................................................................................................................8

II VALEURS MOYENNES............................................................................................................................................8

III PRESSION D"UN GAZ PARFAIT EN EQUILIBRE STATISTIQUE......................................................................................8

IV EQUATION D"ETAT DU GP....................................................................................................................................9

V ENERGIE D"UN GPM.............................................................................................................................................9

VI GENERALISATION................................................................................................................................................9

VII CAPACITE THERMIQUE A VOLUME CONSTANT....................................................................................................10

4 - PREMIER PRINCIPE DE LA THERMODYNAMIQUE...............................................................................11

I ENERGIE D"UN SYSTEME FERME EN THERMODYNAMIQUE.......................................................................................11

II TRAVAIL DES FORCES DE PRESSION......................................................................................................................12

III PREMIER PRINCIPE DE LA THERMODYNAMIQUE...................................................................................................12

IV CAPACITE THERMIQUE A PRESSION CONSTANTE..................................................................................................13

V APPLICATION A LA CALORIMETRIE......................................................................................................................13

5 - PROPRIETES ENERGETIQUES DES GAZ PARFAITS...............................................................................15

I LOIS DE JOULE.....................................................................................................................................................15

II RELATION DE MAYER POUR LES GP....................................................................................................................15

III TRANSFORMATION ISOTHERME REVERSIBLE D"UN GP.........................................................................................15

IV TRANSFORMATION ADIABATIQUE REVERSIBLE D"UN GP (ISENTROPIQUE).............................................................15

V CYCLE DE CARNOT D"UN GAZ PARFAIT................................................................................................................16

IV DETENTE DE JOULE - GAY LUSSAC : ISOENERGETIQUE.......................................................................................16

VII DETENTE DE JOULE - THOMPSON (OU JOULE - KELVIN) : ISOENTHALPIQUE........................................................16

VIII METHODOLOGIE.............................................................................................................................................17

6 - SECOND PRINCIPE DE LA THERMODYNAMIQUE ; ENTROPIE...........................................................18

I NECESSITE D"UN SECOND PRINCIPE........................................................................................................................18

II ENONCE NON MATHEMATIQUE DU 2E PRINCIPE.....................................................................................................18

III ENONCE MATHEMATIQUE DU 2E PRINCIPE...........................................................................................................18

IV PROCESSUS REVERSIBLES ET PROCESSUS IRREVERSIBLES....................................................................................18

V CYCLES DITHERMES...........................................................................................................................................19

VI INEGALITE DE CLAUSIUS...................................................................................................................................19

VII ENTROPIE........................................................................................................................................................20

VIII BILANS D"ENTROPIE........................................................................................................................................20

!7 - MACHINES THERMIQUES...........................................................................................................................22

I MACHINES MONOTHERMES...................................................................................................................................22

II MACHINES DITHERMES.......................................................................................................................................22

8 - CHANGEMENTS D"ETAT DES CORPS PURS.............................................................................................23

I EQUILIBRE LIQUIDE-GAZ......................................................................................................................................23

II EQUILIBRES SOLIDE-LIQUIDE ET SOLIDE-GAZ.......................................................................................................24

9 - THERMOCHIMIE...........................................................................................................................................26

I CHALEURS DE REACTION......................................................................................................................................26

II RELATION ENTRE DRH ET DRU.............................................................................................................................26

III VARIATION DES CHALEURS DE REACTION AVEC LA TEMPERATURE.......................................................................26

IV CALCUL D"UNE ENTHALPIE DE REACTION............................................................................................................26

V ENERGIE DE LIAISON COVALENTE........................................................................................................................27

VI TEMPERATURE DE FLAMME (OU T° DE COMBUSTION ADIABATIQUE ISOBARE/ISOCHORE)......................................27

/)&)+(9&.$):2.*0%,((*,(*0%

I Divers états de la matière

&/('&*,(*0% $+*)/&*,(++*2 $+*).$&-9 &$-&*'(',./&$,/$-*0%, ",,$+*),/$2,*)'&',,&$2(*2)';$&.4+, &/('&*,(*0% "*0%*),

7*2/$.-&,,*4+,D.*,)*+((*$25/+(.-'&(%&2'+*4+>.,,,5$+%.*0%,&2), AAA

B.#-$%&+1%( #@AAB.#-$%&+.&/%&

';'&2/7%2,*('7)Er+*0%*)Fr% G 3#B.#-$%&+1*&

II Pression dans un fluide en équilibre

C+%*)2'0%*+*4&

.$%5.2(,*2/,,2(,()',$&)$22', ';*2*(*$2)+-&,,*$2';*2*(*$2)+-&,,*$2';*2*(*$2)+-&,,*$2';*2*(*$2)+-&,,*$2 ;+%*)%4&:/2(&)+1'+'.2(),%&;/

21:-,)1'+'.2(),%&;/*..&'2*('7 E .I

;7 "$*;$2).2(+)+,((*0%),;+%*), )2,+&';'&2(*+(&&,(&,%--+*+'27Er

2,%2&';'&2(*+2$2+*+'23++)5*2(7Er

&<26+,%&;/,(-&($%(+.H.'+6(.

ErGK/(,*G,()*&*'5&,+4,

EAKrG,*)-+%,3$2/9$*,*(GEA6+,%&;/+*4&

"$*;$2).2(+)+19:)&$,((*0%

7JEr9((2(*$239,(-$,*(*;

2,+/,-&(*/%+*&$8G5&*(&<,-%D ).$2-%(/$2,*)'&&0%rE/(

Er;+%*)5,$+*)

&*2/*-)%4&$.<(& )$22+-&,,*$2(.$,-9'&*0%7AEr 9 2*(',

7 (.E 3A # AME 3A #4&E?@A..> ..E ##

&*2/*-)%.2$.<(&)*;;'&2(*+

GEA±r9±,%*52(+,%&;/+*4&+-+%,9%(

III Description d"un système par des variables d"état

E($%(/0%*,(6+1=('&*%&)/((,%&;/

-,).(*<&N,:,(<.$%5&(30%*'/92($%( +;%(4*2)'/&*&+,,:,(<.,0%+1$2/$2,*)<&!AAA --+',5&*4+,)1'(( ,%;;*,2(/&E;3 &*4+)1'((=(2,*5 =75$+%.3.,,32$.4&).$+,3/9&'+/(&*0% &*4+)1'((*2(2,*5

IV Equilibre d"un système

2,:,(<.,(2'0%*+*4&(9&.$):2.*0%

(9&.$):2.*0%0%1*+20%*((&-,,-$2(2'.2(

V Transformation d"un système

$(*$2)(&$(*$2)(&$(*$2)(&$(*$2)(&2,;$&.(*$22,;$&.(*$22,;$&.(*$22,;$&.(*$2 &2,;$&.(*$2

E-,,)1%2'(()1'0%*+*4&(9&.$):2.*0%6%2%(&

&2,;$&.(*$20%,*,((*0% ($%(*2,(2( &*2,),4+6,,%&;/ &2,;$&.(*$2&'5&,*4+ *25&, &2,;$&.(*$2*&&'5&,*4+ =7C*+.'(++*0%,%&+0%+$2=&/%2(2,*$2).2*<&0%,*,((*0% (.-,7(&2,;$&.(*$2&'5&,*4+ (.-,7(&2,;$&.(*$2*&&'5&,*4+(0%,*,((*0%

VI Equation d"état

0%(*$2)1'((E'0%(*$20%*&+*+,5&*4+,)1'((

33CEA7/1,(%2'0%(*$2)1'(()%,:,(<.

®!5&*4+,)1'((*2)'-2)2(,

VII Coefficients thermoélastiques (ou de réponse) d"un fluide aE bE c E

2)-+%,aEb c).$

"R I Propriétés thermoélastiques des gaz réels aux faibles pressions '0%*+*4&(9&.*0%2(&%= (.-'&(%&2%++6++/;$2)2(() AA6+(.-'&(%&)1'4%+*(*$2)+1%®'/9++/2(',*.+*,+,

2G,(2;&.')2,%2&',&5$*&&)%'

30%*,(&$%5)2,%24*2)(.-'&(%&)'(&.*2'$%

*&..)+-:&$2

72;$2/(*$2)6(.-'&(%&/$2,(2(7*,$(9&.

*&..)1.(

5&,%25+%&*2)'-2)2()%G®)';*2*(*$2)+(.-'&(%&7 F E!!F!

"&';'&2/,(/9$*,*)(++,$&(0%+1'/&()(.-'&(%&2(&+(.-'&(%&)++/;$2)2()1 (.( /++)+1%4$%*++2(,$%, (.,$*() AAQ

®QEqUK!?#3 M

+(.-'&(%&)%-$*2((&*-+)+1%

3$8/$=*,(2(+,#'((,)+1%E@AA>

E!?#3 @QEA3A U

II Définition du gaz parfait

"$*)J$:+"$*)J$:+"$*)J$:+"$*)J$:+&*$((7E/&*$((7E/&*$((7E/&*$((7E/((((6)$22'6)$22'6)$22'6)$22'

2--++G-&;*(,,$/*'6%2G&'+%2G*)'+(+0%7

· +,.$+'/%+,,$2(+,.H.,0%/++,)%G&'+

· +1*,$(9&.)2,+)*&..)1.(,(%2)&$*(9$&*G$2(+

"$*)J$:+&*$((

7$%&)$22'3E/(-$%&+G-&;*(,,$/*'

&)';)3$2%&%2&+(*$2)%(:-E&

!!!!"$*)15$)&$ V 75$+%..$+*&"$*)15$)&$ V 75$+%..$+*&"$*)15$)&$ V 75$+%..$+*&"$*)15$)&$ V 75$+%..$+*&

E2

7/$2,(2(%2*5&,++3L/$2,(2(.$+*&),G-&;*(,L

2-%(/+/%+&,5+%&)2,+,7

EAAF2AEV3# W.$+ Q

K2G,(-&;*(ÛE2

(2)'-2)0%) III Applications de l"équation d"état du gaz parfait $;;*/*2(,(9&.$'+,(*0%,$;;*/*2(,(9&.$'+,(*0%,$;;*/*2(,(9&.$'+,(*0%,$;;*/*2(,(9&.$'+,(*0%, aEbE FcE F24*2aEb c ".'+2),G-&;*(, 3 3 32 (!!3!3!32!,()*(*)'+,1*+,(,,*.*+4+6%2G-&;*(3

332(+0%2E2 K2!",.$+'/%+,),)*;;'&2(,G)1%2.'+2*)'+)G-&;*(,21*2(&*,,2(-,

2FES**F*

&,,*$2-&(*++)%G*)2,+.'+2

6+(.-'&(%&)%.'+27-*E2*

F "R ?"$*)+($2 7ES-*

C&/(*$2.$+*&)%G*

7=E2*F2E-*F

,,.$+*&.$:22 )%.'+27ES2**FS2* +/%+)-$%&+1*&7E!X.$+ rEF

ErAFAAF

$%&+1*&)2,+,7rAE 3!XB.# IV Equilibre de l"atmosphère terrestre supposée isotherme

25%(=-&*.&2;$2/(*$2)G:-$(9<,,7

· "1*&,(,,*.*+'6%2G-&;*(

· "(.-'&(%&,(%2*;$&.)2,+1(.$,-9<&)*,/%(4+/&@U).$*2,/90%B. ".$)<+,(/$2524+(2(0%G&,((&<,-(*( "$*;$2).2(+)+,((*0%),;+%*),®EAGF

EAGF9$89E

FEVB.r*&ErAGF9

*GTT93r*&ErA GF9ErA&/(<&*2/$.-&,,*4+)+1*&-$%&G(&<,;*4+ EA GF9EArAG7+$*;$2).2(+)+19:)&$,((*0%-$%&%2;+%*)*2/$.-&,,*4+ #R C V)*

I Modèle du GPM

· ",.$+'/%+,)%,$2(,%--$,',-$2/(%++,5$+%.$//%-'-&+,.$+'/%+,2'+*+4+-&&--$&(%

5$+%.%G

· ",.$+'/%+,,$2(,2,*2(&/(*$2

· ++,,$2(2*.',).$%5.2(,*2/,,2(,()',$&)$22',30%*/$2,(*(%2(+1*((*$2(9&.*0% · ++,;;/(%2(),/$++*,*$2,2(&++,(5/+,-&$*,)%&'/*-*2(0%*/$2(*2(+G · 2(&!/9$/,,%//,,*;,3$2/$2,*)<&+%&.$%5.2(&/(*+*2(%2*;$&. =.-+)7G-&;*(,,,$/*',%=G2$4+,

II Valeurs moyennes

2,*('.$+'/%+*&2,*('.$+'/%+*&2,*('.$+'/%+*&2,*('.$+'/%+*& "5$+%.)%G,("2$.4&).$+'/%+,)2,,( $%)2,*('5$+%.*0%).$+'/%+,2,(2YE)F)t2.# -,)52()&*,$2,),1//%.%+&2%2-$*2(0%12%2%(& )Ej5=35:35G3=3:3G)5=)5:)5G

7")*,(&*4%(*$2),5*(,,,)2,+,(9$.$<27

)Ej5=35:35G)5=)5:)5G "1*,$(&$-*,(+14,2/))*&/(*$2-&*5*+'*' )Ej )5=)5:)5G®-$+:/$--$%&(&$%5&j=/(.2(

TZE FBS*

",$..-%(-$&(&,%&($%(,+,.$+'/%+,+$&,BE

2.$2(&2-9:,*0%,((*,(*0%0%+&',%+((,(+.H.

$%&%22'0%*+*4&,((*,(*0%3TZE*,$(&$-* "5*(,,0%)&(*0%.$:22 %,()';*2*-&%EÖT5IZ T5IZE FS5*IE FS[5[I2&&$%-2(+,.$+'/%+,:2(+,.H.,2$&.,)5*(,,, III Pression d"un gaz parfait en équilibre statistique ,%--$,'/$..%26($%(,+,.$+'/%+, +/%+)Q $2/E.5=I=FE-= #R C $8-,(+-&,,*$2=&/'-&+G,%&+-&$* .$+'/%+,(+2$.4&).$+'/%+,/$2(2%,)2,+5$+%. ..$+'/%+,(+.,,)1%2.$+'/%+)%G

T5IZ,(+5*(,,0%)&(*0%.$:22),.$+'/%+,

IV Equation d"état du GP

-E..$+'/%+.$+'/%+%I '0%(*$2)1'(()%'(4+*6-&(*&),+$*,)+.'/2*0% -E2 '0%(*$2)1'(($4(2%+$&,)+1'(%)./&$,/$-*0% %E

T5IZE#

(E%I $*(BE

FE 3#VA@ A!#WQ /$2,(2()J$+(G.2

2%IE#BF.

Q.$:22)1%2.$+'/%+E#

B\.%I%E 3#B., -$%&

V Energie d©un GPM

E# 2

VI Généralisation

G-&;*(-$+:($.*0%G-&;*(-$+:($.*0%G-&;*(-$+:($.*0%G-&;*(-$+:($.*0%

ESQ*.*/&$,/$-*0%9'$&<.)Q$2*7QEQYK\. K.!5I).$

Q*E\.5*IKQ*Y®E#2

F!KSQ*Y

$%&%2-$+:($.*0%3Z#2 F! $%&%2)*($.*0%3EM2

F!/$2,*)'&(*$2,)))+

%)+63E;$8;ZM2

F!"1'2&**2(&2)1%22)'-2)0%)

$*(%2;+%*)&'+2'0%*+*4&./&$,/$-*0% '2&*)/$9',*$2)%2$:%K;$&.,0%[1$%4+*

2&*EK/($8EQ.*/&$,/$-*0%K.$+'/%+*&

$2/-$%&%2;+%*)&'+3,(;$2/(*$2)() &$-&*'(',)7 · "$&,)1%2(&2,;$&.(*$23! 2)'-2)-,0%+1'(()1'0%*+*4&*2*(*+()+1'(()1'0%*+*4&;*2++2 )'-2)-,)+2(%&)+(&2,;$&.(*$20%*-&.()-,,&)+1'(( 6+1'((! · $%&%2/:/+)(&2,;$&.(*$2&($%&6+1'((*2*(*+-&<,%2,'&*)(&2,;$&.(*$2,3DEA #R C A· ),(%2)*;;'&2(*++($(+ ,$*2(!,:,(<.,*)2(*0%, (!30%+1$2&'%2*(232-+%,)*2( K*2(!+1*2(&/(*$2),.$+'/%+,) *2(&2)%,:,(<./$..%2&2)%&=(2,*5

VII Capacité thermique à volume constant

';*2*(*$2';*2*(*$2';*2*(*$2';*2*(*$2

7/-/*('(9&.*0%)%,:,(<.65$+%./$2,(2(

5)'-2))()1,(%25&*4+=(2,*5/$..32WQ

/-/*('(9&.*0%.,,*0%65$+%./$2,(2(

7/5E5F.3$8.,(+.,,)%,:,(<./5,(2WQ B 3

/-/*('(9&.*0%.$+*&65$+%./$2,(2(

753.E5F2WQ .$+

$%&%23E#2

F!5E#2

F!53.E#

F!E !3MWQ .$+ /5E#

F! !!!!,),G&'+,,),G&'+,,),G&'+,,),G&'+, "1'0%(*$2)1'((),G)2,+.$)<+)2)&]+,,(7

K2IFI24E2

2-%(2/$&'/&*&7E2

F242IFI

24,(--+'+/$5$+%.

2,(+/$5$+%..$+*&

2IFI,(--+'-&,,*$2*2(&2

2&**2(&2)%G)2)&]+,

7E2IF

®)E5)K2I)FI%2)®¥3®(G&'+®

I Energie d©un système fermé en thermodynamique

"1'2&*.'/2*0%21,(-,%2&2)%&/$2,&5(*5"1'2&*.'/2*0%21,(-,%2&2)%&/$2,&5(*5"1'2&*.'/2*0%21,(-,%2&2)%&/$2,&5(*5"1'2&*.'/2*0%21,(-,%2&2)%&/$2,&5(*5

.'/EQK$8Q,(+1'2&*/*2'(*0%./&$,/$-*0% '0%*+*4&./&$,/$-*0%DE\BI .'/2*0%21,(-,%2&2)%&/$2,&5(*5

2/$2,((0%;T**&,$%,;*4+-&,,*$2%.2(,*%.2(

2&*($(+)1%2,:,(<.;&.'7EQK=(K

$87'2&**2(&2)%,:,(<.EQ.*/&$K*2( )12,.4+./&$,/$-*0%)%,:,(<. .7.'/EQ./&$K=(K*2( &-&*2/*- -$%&%2,:,(<.;&.'(*,$+'7DEA /92,)1'2&*/92,)1'2&*/92,)1'2&*/92,)1'2&* *'/9ZA3%.2(7+,:,(<.;;/(*5.2(&^%)+1'2&* · 2/*2(0%*/$..%2*0%5/+.*+*%=('&*%&-&%2&4&($%&22(6+5*(,,2%+*&w d]EG)aEGw)(

2(&+,)(,( ((!3+,:,(<.&^$*(+(&5*+]E( (!Gw)(E'/9ED

· :+*2)&6-&$*,)*4(*0%,5/%2-*,($2)*4(*0%2)'-+/+-*,($2).2*<&6/0%+5$+%.

2;*(3'/9E]-&,,*$2

· *-_+'+/(&$/*2'(*0%*2)';$&.4+2(&+,)(,( ((!3+,:,(<.&^$*(]E%J*J)( !,#;$&.,)(&2,;&('2&'(*0%,$2(--+',(&5*+ ++,/$&&,-$2)2(6%2)'-+/.2(./&$,/$-*0% $*( .$+)2;&.')2,%2&'/*-*2(*2)';$&.4+)-&$*)*(9&..'(+((*2*(*+7+G,(2 '0%*+*4&5/%2(9&.$,((6 E!?#Q2-+$2+&'/*-*2()2,%2(9&.$,((6!E#?#Q+1'0%*+*4& ;*2+3+(.-'&(%&)%G,(!E#?#Q"1'2&**2(&2)%5&*'DE !?W /9+%&32$('

2(&-&'((*$2.*/&$,/$-*0%

,1&&H(0%+$&,0%1*+:'0%*+*4&,((*,(*0%

II Travail des forces de pression

&5*+'+'.2(*&),;$&/,)-&,,*$2&5*+'+'.2(*&),;$&/,)-&,,*$2&5*+'+'.2(*&),;$&/,)-&,,*$2&5*+'+'.2(*&),;$&/,)-&,,*$2

-*,($23;$&/,);&$((.2(9/-*,($2 d]-&,,*$2E=())QKd];&$(( )QEAÛ(&2,;$&.(*$20%,*,((*0% d]-&,,*$2E=()5/=(E

· "5$+%.)%G-,, 6!6-&,,*$2=('&*%&/$2,(2(

2(&!'((,)1'0%*+*4&)%-*,($23,2,

;&$((.2( ]1E=(! · ,)1%2(&2,;$&.(*$20%,*,((*0%.'/2*0%.2(&'5&,*4+

7]1E ®!)

MMMM=.-+,=.-+,=.-+,=.-+,

&2,;$&.(*$2*,$/9$&E/(7]EA *DQEA(]CEA3]E=(! &2,;$&.(*$2*,$4&.'/2*0%.2(&'5&,*4+0%,*,((*0%]E!

III Premier principe de la thermodynamique

(&2,;&((9&.*0% DQKD=(KDE]K -&',2()2,D=( #*DQEA(D=(EA3DE]K3()2,//,3-$%&),'((,(C)'(&.*2',3D,()'(&.*2';$2/(*$2 (&2,;$&.(*$2 =-&,,*$2)*;;'&2(*++)% &-&*2/*-7)QK)=(K)Ed]Kdquotesdbs_dbs28.pdfusesText_34
[PDF] cours de thermodynamique stu-svi - FSR

[PDF] Thyristor

[PDF] Je veux apprendre a trader

[PDF] La traduction anglais-français - Decitre

[PDF] Cours de traitement de texte (Microsoft Word)

[PDF] Manuel sur le transit - UN-OHRLLS

[PDF] Cours de typographie - Formes Vives

[PDF] Cours de typographie - Formes Vives

[PDF] ESTIMATION DE LA VALEUR EN DOUANE DES MARCHANDISES

[PDF] AUDIT COMPTABLE ET FINANCIER

[PDF] WORD 2010 - Cours BARDON

[PDF] cours zoologiepdf

[PDF] DA Bac pro-CGEA_MP51A B - ChloroFil

[PDF] zootechnie générale - IRIS

[PDF] La décolonisation