[PDF] Système de coordonnées





Previous PDF Next PDF



Comment lire pratiquement les coordonnées dun point identifié sur

1 avr. 2022 Pour obtenir la meilleure précision possible soit une dizaine de mètres



Système de coordonnées

? restant fixés). • Calculer par dérivation



Chapitre 1 : 2D Courbes Paramétrées et coordonnées polaires

Tracer la courbe d'équation polaire r = 2 cos ?. b. Trouver une équation Cartésienne de cette courbe. Solution : Pour commencer nous indiquons les valeurs de r 



LES COORDONNEES GEOGRAPHIQUES : RAPPELS ET TYPES D

Les mesures 1 et 2 permettent de calculer avec précision la latitude et les mesures 3 et 4 la longitude. Attention : pour le lieu A



Cartes topographiques : Les éléments de base

Vous pouvez trouver ou indiquer une position sur une carte en utilisant les coordonnées géographiques (longitude et latitude) ou les coordonnées du quadrillage 



FICHE PRATIQUE

7 févr. 2020 Ajouter les coordonnées GPS de son enseigne. Objectif. Trouver les coordonnées GPS d'un lieu pour pouvoir les enregistrer dans une fiche ...



Coordonnées dans une base

Pour trouver les coordonnées d'un vecteur dans une base on écrit l'équation (vectorielle) caractéristique on convertit cette équation en syst`eme numérique on 



Repérage dun astre sur la sphère céleste

L'ascension droite est comparable à la longitude sur la Terre. Ce système de coordonnées est indépendant du lieu d'observation et est donc commode pour.



Transformation coordonnées

?. r t( ). On peut pousser plus loin et calculer le vecteur accélération dont on sait qu'il joue un grand rôle en Physique (équation de Newton).



Devoirs Surveillés et Examens

En deuxième lieu : déterminer les coordonnées des points AB

Coordonnées

COORDONÉES POLAIRES (rappel)

En géométrie plane, le système

de coordonnées polaires est utilisé pour donner une description plus simple de certaines courbes (et surfaces).

La figure nous permet de nous

Souvenir de la relation entre coordonnées polaires et cartésiennes. ƒSi le point Pa (x, y) pour coordonnées cartésiennes et (r, ș)comme coordonnées polaires alors x= rcos șy = r sin ș r2= x2+ y2tan ș= y/x

COORDONNÉES CYLINDRIQUES

En dimension 3 il y a un système de coordonnées, appelé coordonnées cylindriques, qui :

ƒEst similaire aux coordonnées polaires.

ƒDonne une description simple de nombreux domaines (surfaces, volumes). Dans le système de coordonnées cylindriques, un point Pde -D) est représenté

Par le triplet (r, ș, z), où :

ret șsontles coordonnées polairesdelaprojection de P sur le plan xy, zestla distance orientéedu plan xyàP.

Pour convertir des coordonnées cylindriques en

cartésiennes, on utilise : x= rcos ș y= rsin ș z= z Pour convertir des cartésiennes en cylindriques, on utilise: r2= x2+ y2 tan ș= y/x z = z

COORDONNÉES CYLINDRIQUES

Exemple

a.Placer le point de coordonnéescylindriques(2, 2ʌ/3, 1)et donner sescoordonnéesrectangulaires. b.Donner les coordonnéescylindriquesdu point de coordonnéesrectangulaires(3, 3, 7).

Solution

a) Le point de cylindriquescoordonnées (2, 2ʌ/3, 1)estplacésur la figure.

Sescoordonnéesrectangulairessont

Le point a doncpour coordonnéesrectangulaires(1, , 1). 3

212cos 2 132

232sin 2 332

1 x y z S

Solution (b)

On a :

Un jeude coordonnéescylindriquesestdonc:

Un autre:

ƒCommepour les coordonnéespolaires, ily a uneinfinite de choixpossibles.

223 ( 3) 3 2

37tan 1, so 234

7 r n z T T S (3 2,7 /4, 7)(3 2, /4, 7)

Coordonnéescylindriques

Les coordonnéescylindriquessontutilesdansles problèmes oùexisteunesymétrieaxiale. On choisitalorsdes z de façonà cecoincide avec cetaxe de symétrie. ƒPar exemple, pour le cylindreà base circulaire, z, ila pour équationcartésiennex2+ y2= c2. ƒEncoordonnéescylindriques, cecylindrea comme

équation: r= c(beaucoup plus simple!).

Exercice

z= ren coordonnées cylindriques

Solution

ƒz de la surface) est la même que r(distance de ce point à z).

ƒComme ș

z. Donc, toute section horizontale de la surface par un plan z= k (k> 0) est a cercle de rayon k. Ceci suggère que la surface est coordonnées rectangulaires.

On a : z2= r2= x2+ y2, cette équation

(z2= x2+ y2équation cartésienne z.

SYSTÈME DE COORDONNÉES SPHERIQUES (3D)

Le systèmede coordonnéessphériquesestun autresystèmede coordonéesutile entroisdimensions. ƒIl simplifieenparticulierles calculstriples sur des volumes limitéspar des portions de sphèresoude cônes. Les coordonnéessphériques(ȡ, ș, ĭ) Pde sont:

ƒȡ= |OP|, ladistance deO

à P(ȡ0)

ƒș,le mêmeangle

coordonnéescylindriques.

ƒĭ, entre les vecteurszet

OP. l'angle formé par les vecteurs zet OPest appelé colatitude le plan équatorial et OP).

Notons que la première coordonnée (la

distance entre Oet P) est toujours positive, et que la colatitudeest comprise entre 0 et ,

En physique, les notations șet ĭsont

Généralement interverties, comme sur la

figure ci-contre.

La distance est souvent notée r.

REMARQUE TRÈS IMPORTANTE

Notations "physiques»

Notations "mathématiques»

COORDONNÉES SPHÈRIQUES

Utiliser un système de coordonnées sphériques peut être particulièrement utile pour résoudre des problèmes présentant origine du système. ca alors une équation très simple :

ȡ= c.

Our= c en

Le grapheéquationș= c

(= c ennotations physiques) estun demi plan verticalcontenant Oz.

équationĭ= c(ș= c en

notations physiques) représenteun demi-cône z.

COORDONNÉES SPHÈRIQUES

La relation entre coordonnéescartésiennesand sphériquesse déduitde la figure.

COORDONNÉES SPHÈRIQUES & CARTÉSIENNES

Considéronslestriangles OPQ

et, ona: z= ȡcos ĭ, r= ȡsin ĭ

ƒEt comme,

x= rcos ș, y= rsin ș

On obtientles formulesde

conversion : x= ȡsin ĭcos ș y= ȡsin ĭsin ș z= ȡcos ĭ

Avec les notations physiques, la relation

de passage aux coordonnées cartésiennes s'écritdonc :

COORDONNÉES SPHÈRIQUES & CARTÉSIENNES

Exercice :

Le point (r= 2, = ʋ/3, = ʋ/4) est donné en coordonnées schéma et calculer ses cordonnées cartésiennes.

Solution

Coordonnéescartésiennes:

1 2

3 1 3sin cos 2sin cos 23 4 2 22

3 1 3sin sin 2sin sin 23 4 2 22

cos 2cos 2 13 x x z U I T

SSU I T

SUI x y z

La formuledonnantla distance indiqueque :

r2= x2+ y2 + z2 ƒOnutilise cetteéquation pourconvertirles coordonnées cartésiennes en coordonnéesspheriques. Exercice: Le point estdonnéencoordonnées cartésiennes. Caculerdes coordonnéessphériquespour cepoint.

0,2 3, 2

COORDONNÉES SPHÈRIQUES & CARTÉSIENNES

On a :

Doncon a : r = 4, ߠ

ଷ(colatitude), ߮

Solution

Considérons M de coordonnées

sphériques (r, , ).

Le vecteur position de Mest :

OM= rur

urest le vecteur unitaire radial.

Repèrecomobile

Les coordonnées cartésiennes de Msont :

On aura donc pour ur: •‹ߠ...‘•߮ǡ•‹ߠ•‹߮ǡ...‘•ߠ

Repèrecomobile

Lvarie le point M

décrit un cercle, dans un plan parallèle à (Oxy), de rayon ݎ...‘•ߠ

Le vecteur unitaire tangent en Mà

cette courbe est noté u, il est situé dans le plan "horizontal» (x,y).

OM(et donc

à ur), puisque la norme de OMest constante

lorsque Mse déplace sur le cercle. on a : u= -sinux+ cosuy

Repèrecomobile

varie le point

Mdécrit un demi grand cercle

(méridien).

Le vecteur unitaire tangent à

cette courbe, en M, est noté u. Il est orthogonal à urpuisque, lorsque Mdécrit le demi cercle, la norme du vecteur OMest constante (ۻ۽ uest dans le plan "méridien», il est donc orthogonal à uqui est dans un plan "horizontal». Le repère comobile(M,ur,u,u) est orthonormé direct et lié à M. cartésiennes de u(à vérifier en exercice) : (coscos, cossin, -sin)

Exercice

Donner les équations paramétriques de la courbe décrite par le point Mde coordonnées sphériques (r, , ) lorsque varie (ret restant fixés). Calculer, par dérivation, le vecteur tangent à la courbe, en déduire les coordonnées cartésiennes de u Donner les équations paramétriques de la courbe décrite par le point Mde coordonnées sphériques (r, , ) lorsque varie (ret restant fixés). Calculer les coordonnées cartésiennes de ude deux façons différentes. Les équations paramétriques sont, bien sûr : On obtient les coordonnées du vecteur tangent Tpar dérivation des coordonnées de Mpar rapport à :

Solution

TT||2= r2sin2(sin2+ cos2) = r2sin2, ||T|| = rsin( sin est positif car אߠ-ǡߨ u= (-sin, cos, 0)

Les équations paramètiquessont :

On obtient les coordonnées du vecteur tangent Tpar dérivation des coordonnées de Mpar rapport à : ||T||2= r2cos2(cos2sin2) + r2sin2= r2 (cos2+ sin2) = r2 Donc ||T|| = r, les coordonnées cartésiennes de u= T/ ||T|| sont : (coscos, cossin, -sin) Remarque: comme on le voit sur les coordonnées de ur, urest une fonction des deux variables et phi. au chapitre suivant. On peut déjà observer que les calculs précédents montrent que le vecteur dérivé de urpar rapport à (à fixé) est u, et que le vecteur dérivé de urpar rapport à (à fixé) est sinu.quotesdbs_dbs18.pdfusesText_24
[PDF] trouver les coordonnées d'un point dans l'espace

[PDF] Trouver les coordonnées de D pour que ABCD sois un paralélogramme

[PDF] Trouver les coordonnées du point K tel que le quadrilatere ALBK soit un parallélogramme

[PDF] Trouver les définitions

[PDF] trouver les derivees suivantes

[PDF] trouver les different sortes d'attribut

[PDF] trouver les différentes sortes d'attribut

[PDF] trouver les dimensions d'un rectangle avec son aire

[PDF] trouver les dimensions d'un rectangle grace ? son perimètre

[PDF] trouver les dimensions d'un triangle rectangle avec son aire

[PDF] Trouver les diviseurs de 1250

[PDF] trouver les effets et le mode d'action sur la perception sensorielle et la commande du mouvement

[PDF] Trouver les énergies renouvelables

[PDF] Trouver les entiers positifs

[PDF] Trouver les erreures