[PDF] Exercices et Contrôles Corrigés de Mécanique Analytique et





Previous PDF Next PDF



Exercices et Contrôles Corrigés de Mécanique Analytique et Exercices et Contrôles Corrigés de Mécanique Analytique et

Corrigé de l'exercice 1 : Transformations canoniques (5pts). Soit la Les équations de Lagrange en présence du multiplicateur de lagrange λ sont don-.



PROBLÈMES CORRIGÉS DE MÉCANIQUE ET RÉSUMÉS DE

Mécanique lagrangienne principe de d'Alembert. 1.2. La fronde. 1. 23. Equations de Lagrange pour un système très simple. 1.3. La corde glissant sur la table. 1.



MECANIQUE DES FLUIDES: Cours et exercices corrigés

MECANIQUE DES FLUIDES. Cours et exercices corrigés. Khalida BEKRENTCHIR. Docteur en Génie des Procédés. Laboratoire d'Ingénierie des procédés et de l 



EPFL

Dans cet exercice nous cherchons la courbe dans le plan (x



TD 1 : Mécanique lagrangienne

1.1.6. Résoudre les équations de Lagrange. Exercice 2 : Oscillations d'une masse au bout d'un ressort. 2.1.



MECANIQUE DES FLUIDES: Cours et exercices corrigés

Cours et exercices corrigés. Khalida BEKRENTCHIR. Docteur en Génie des Procédés Mécanique des Fluides. Chapitre 1. 17. 1.7 Applications. Exercice 01 : Trouver ...



Vibrations et Ondes (F312) : Cours et Exercices Corrigés Partie I

Introductions aux équations de Lagrange. 20. I-5- Exercices non corrigés. Exercice N°1 On appelle impédance mécanique d'entrée du système mécanique le ...



Mécanique des fluides

Correction de l'exercice 7 Les constantes Kv et Ku sont adimensionnelles. On appelle dérivée matérielle (ou de Lagrange) l'opérateur différentielle df dt.



Problèmes corrigés de mécanique et résumés de cours

Exercices corrigés d'analyse. Tomes 1 et 2 (D. Alibert) - Introduction aux On peut énoncer les lois de la mécanique (lois de Newton ou équations de Lagrange).



Chapitre I Généralités sur les Vibrations et les équations de Lagrange

Je souhaite que ce recueil d'exercices corrigés et exercices supplémentaires en vibrations L'impédance mécanique d'entrée du système mécanique le rapport ...



Exercices et Contrôles Corrigés de Mécanique Analytique et

En utilisant les équations de Lagrange établir l'équation du mouvement. 1.2 Corrigés des exercices ... De même



Vibrations et Ondes (F312) : Cours et Exercices Corrigés Partie I

Il comprend cinq chapitres cités ci- dessous : - Chapitre I : Introduction aux équations de Lagrange. - Chapitre II : Oscillations libres des systèmes à un 



PROBLÈMES CORRIGÉS DE MÉCANIQUE ET RÉSUMÉS DE

PROBLÈMES CORRIGÉS. DE MÉCANIQUE. ET RÉSUMÉS DE COURS. DE LAGRANGE À HAMILTON. Claude GIGNOUX et Bernard SILVESTRE-BRAC. C17 avenue du Hoggar.



Problèmes corrigés de mécanique et résumés de cours

Exercices et problèmes corrigés (E. Belorizky & W. Gorecki) - La lations de Lagrange et Hamilton et nous espérons que le présent ouvrage comblera.



Mécanique analytique

Chapitre 2 : Le formalisme de Lagrange est introduit. On décrit la construction du Présentation : Ajout d'exercices en fin de chapitres.



MECANIQUE DES FLUIDES II

Filière : Génie mécanique. 3ème Année Licence. Génie Mécanique Energétique. Polycopié de la matière : MECANIQUE DES FLUIDES II. Cours & Exercices corrigés.



Mécanique du solide et Mécanique analytique

Mar 4 2022 écrire les équations de Lagrange. En donner la solution générale. Interprétation physique ? Exercice 1.1.4. Soit L(r



Mécanique du solide et Mécanique analytique

Jan 2 2012 écrire les équations de Lagrange. En donner la solution générale. Interprétation physique ? Exercice 1.1.4. Soit L(r



Exercices de dynamique et vibration mécanique

Nov 14 2021 Vibrations des systèmes mécaniques



EPFL

Mécanique Analytique Corrigé 4. Assistants : jaap.kroes@ep .ch & benjamin.audren@ep .ch. Exercice 1 : Deux masses et un ressort.

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

CHAPITRE1

Formalisme lagrangien

1.1 Exercices

1.1.1

Exercice

1. Rappeler ce qu"est un d´eplacement virtuel et qu"appelle-t-on par le travail virtuel

en g´en´eral? Que devient ce travail si le syst`eme est statique ou se d´eplace avec un mouvement uniforme?

2. Consid´erons une massemplac´ee enAet reli´ee par deux tiges rigides aux points

OetB. Les barres de logueurOA=AB=lsont articul´ees enA. Le support de l"articulationOest fixe et le patin articul´e enBpeut glisser sans frottement le long de l"axe horizontal, figure 1.4. Les articulations sontsuppos´ees parfaites et les masses des tiges et du patin sont negligeables. (a) Quel est le nombre de degr´es de li- bert´e de ce syst`eme? (b) En appliquant le principe de d"Alembert, quelle force?Ffaut-il appliquer au patin pour que le sys- t`eme reste en ´equilibre? (c) D´eterminer la valeur de la r´eaction enB. Oy x A B

ORl lgmBR

F

Figure1.1 - Syst`eme de treillis.

1.1.2Exercice

3

Formalisme lagrangien

On consid`ere une sph`ere creuse (S) de

rayonadans un rep`ere galil´eenR(O,xyz).

Une bille suppos´ee ponctuelle de massem

est astreinte `a se d´eplacer sans frottement `a l"int´erieur de la sph`ere, figure 1.5

1. Quelles sont les contraintes sur le

mouvement dem? En d´eduire le nombre de degr´e de libert´e de la bille.

2. Calculer les composantes des forces

g´en´eralis´ees.

3. En d´eduire les ´equations du mouve-

ment.

4. Calculer l"´energie cin´etique de la

bille, en d´eduire les ´equations de La- grange et ensuite les ´equations du mouvement.

5. Etudier le cas o`uθetφsontconstants.

Y Z X ?ρr θM ru θu ?u O

Figure1.2 - Mouvent d"une bille `a l"int´e-

rieur d"une sph`ere.

1.1.3Exercice

On consid`ere une perle de massemqui peut coulisser parfaitement sur un cerceau de rayonR. Le cerceau est vertical et tourne autour de l"axe vertical avec la fr´equence angulaire Ω =φfixe, figure 1.3.

1. Relever les contraines sur le mou-

vement de la perle et montrer que la position de la perle est compl`ete- ment d´ecrite par la variableθ.

2. Calculer l"´energie cin´etque et l"´ener-

gie potentielle. En d´eduire le lagran- gien de la perle.

3. Calculer le moment conjugu´epde

θ. En d´eduire que l"expression du

hamiltonien peut se mettre sous la forme

H(θ,p) =P2

2mR2+˜U(θ).

Interpr´eter les diff´erents termes de

H(θ,p).

4. D´eterminer les extremums de

˜U(θ).

En d´eduire les positions d"´equilibreet discuter les en fonction de Ω.Quelle sera la trajectoire de la perlesi les conditions initiales sontθ= 0

etθ= 0. Oz y x M R

Figure1.3 - Mouvent d"une perle sur un

cerceau. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices5

1.1.4Exercice

Dans un espace `a deux dimensions (x,z), on consid`ere un milieu mat´eriel d"indice de r´efraction n=n(z). La distance parcouruedsest li´ee `a l"indice de r´efraction pards= cdt/n, o`ucest la vitesse de la lumi`ere dans le vide. L"objectif est de chercher le chemin le minimum du chemin optique (Principe de Fermat).

1. Ecrire l"expression du chemin optique comme une int´egrale sur le param`etrez. En

utilisant le principe de moindre action, montrer qu"il existe une int´egrale premi`ere.

En d´eduire les lois de Snell-Descartes.

2. Ecrire le chemin optique comme une int´egrale sur le param`etrex. En utilisant

le principe de moindre action, montrer qu"il existe une int´egrale premi`ere. En d´eduire les lois de Snell-Descartes.

3. Trouver la trajectoire lumineuse pour une variation lin´eaire de l"indice de r´efrac-

tionn(z) =n0+λz, sachant que les conditions initiales sontz(0) = 0 etz?(0) = 0.

1.1.5Exercice

Soit un pendule de longueurlavec une masse plac´ee dans un champs de pesanteurg et astreint `a se d´eplacer dans un plan (x,y) muni de la base mobile (?ur,?uθ). La position du pointMest rep´er´ee par--→OM=l?ur.

1. Calculer le nomde de degr´es de libert´e. En d´eduire que l"on peut d´ecrire le syst`eme

par la coordonn´eeθ.

2. Calculer la vitesse et d´eduire l"expression de l"´energie cin´etique.

3. Calculer le travail effectu´e lors d"un d´eplacement virtuelδ?r=lδθ?uθ. En d´eduire

l"expression de la composante de la force g´en´eralis´ee selonθ.

4. En utilisant la relation entre l"acc´el´eration g´en´eralis´ee et la force g´en´eralis´ee selon

θ, d´eduire l"´equation du mouvement enθ.

5. Calculer l"expression du Lagrangien et d´eduire l"´equation du mouvement en uti-

lisant l"´equation de Lagrange.

1.1.6Exercice

Soit une massemastreinte `a se d´eplacer sur une tige ind´eformable faisant un angle θavec la verticaleOZ, en rotation impos´ee avec un vecteur de rotation?Ω = Ω?uZ. La masse est attach´ee `a un ressort de constante de raideurket de longueur `a videl0et glisse sans frottement. Elle est par ailleurs soumise `a son poids.Ce syst`eme est `a un degr´e de

libert´e, on choisit la distancer=|--→OM. Le r´ef´erentiel choisi est celui du laboratoire. Il

est galil´een.

1. Calculer la vitesse et d´eduire l"´energie cin´etiqueT.

2. Calculer la force g´en´eralis´ee associ´ee `a la coordonn´eer.

3. En utilisant les ´equations de Lagrange, ´etablir l"´equation du mouvement.

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Formalisme lagrangien

1.1.7Exercice

On consid`ere deux billes de masses respectivesmetM (m < M), attach´ees entre elles par un fil inextensible de masse n´egligeable passant par un petit trou dans un plan horizontal. La petite bille est anim´ee d"un mouvement de rotation sur le plan horizontal. La grande bille est sus- pendue au fil et chute sous l"effet de son poids. On notel la longueur totale du fil et r la longueur du segment ho- rizontal. On noteθl"angle que fait le segment horizontal avec un direction fixe quelconque du plan.

Plateau

z x y O m θr k i j reθe M

1. Calculer le lagrangienL=T-Vpour les coordonn´ees g´en´eralis´ees (r,θ).

2. D´eterminer la coordonn´ee cyclique et reconnaˆıtre sonmoment conjugu´e. Pourquoi

est-il conserv´e?

3. En d´eduire l"´equation diff´erentielle du mouvement pourr.

4. On s"int´eresse aux premiers instants de la chute. On poser=l(1-?) avec??1.

d´eterminer l"´equation diff´erentielle v´erifi´ee par?. Montrer pour qu"une valeur de

la vitesse angulaire initialeθ0, la chaˆıne ne peut pas tomber. Dans le cas o`u la chaˆıne tombe, que devient la vitesse angulaire initialeθ.

1.1.8Exercice

On utilise le formalisme de Lagrange

pour ´etudier le syst`eme suivant : une masse ponctuellem1est reli´ee par un fil suppos´e sans masse de longueurl1`a un point fixeO.

Une seconde massem2est reli´ee par un fil

sans masse de longueurl2`am1. Les deux masses ne peuvent pas se mouvoir que dans le plan vertical.O m1 m2θ1

θ2l

1 2 l y x

1. D´efinir les liaisons, le nombre de degr´es de libert´e et les coordonn´ees g´en´eralis´ees.

2. Calculer l"´energie cin´etique et l"´energie potentielle. En d´eduire l"expression du

Lagrangien.

3. Trouver les ´equations du mouvement.

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices7

1.1.9Exercice : Machine d"Atwood

Le dispositif de la machine d"Atwood est d´ecrit par la figure ci-contre. La massem1est reli´ee `a la poulie 1 de masseMpar l"interm´ediaire d"une cordre inextensible de longueurLet de masse n´egligeable. Quant `a la massem2, elle est reli´ee `a la massem3par le biais d"une corde inexten- sible de longueurLest de masse n´egligeable.

Les poulies 1 et 2 ont des rayons respectifsR1

etR2. La poulie 1 est accroch´ee par un fil inex- tensible de masse n´egligeable et de longueurl0.

Les fils glissent sur les poulies sans frottement

et les moments d"inertie de ces derni`eres sont n´egligeables.

Poulie 1

1m

Poulie 2

2m 3m

1. D´enombrer les forces appliqu´ees au syst`eme des massesmi,i= 1,2,3 etMet

relever les forces de liaison.

2. Etablir les expressions des contraintes et dire de quellenature sont-elles. Justifier

les r´eponses.

3. En d´eduire le nombre de degr´es de libert´e et pr´eciser les coordonn´ees g´en´eralis´ees

`a utiliser.

4. En utilisant le formalisme de Newton, retouver les ´equations du mouvement et

d´eduire les expressions des acc´el´erations de chacune des masses, d"une part, et des forces de liaison, d"autre part.

1.1.10Exercice

Un artisan utilise une ´echelle de hauteur

?--→AB?=Let de masseMpour peindre un mur. Les extr´emit´es de l"´echelle s"appuient sur le mur et le sol, voir figure ci-contre. Le pied de l"´echelle est attach´e au pointOdu mur par l"interm´e- diaire d"une corde inextensible de longueurlet de masse n´egligeable de fa¸con que l"´echelle fasse un angleθet assure sa stabilit´e. SoitGle centre de gravit´e de l"´echelle. Les frottements enAet enBsont nuls. gMy O xGA B l

1. D´enombrer les forces appliqu´ees `a l"´echelle en distinguant les forces de liaison.

2. Quel est le type de liaison en B? Justifier la r´eponse. Montrer que lorsque l"´echelle

se d´eploie, avant d"atteindre sa position d"´equilibre stable, le nombre de degr´e de Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Formalisme lagrangien

libert´e est ´egal `a 1.On utilise dans la suite de l"exercice la coordonn´ee g´en´eralis´ee

3. On se propose de calculer la tension du fil

?T. On cherche `a ´eliminer les r´eactions du mur sur l"´echelle,?RA, et du sol sur l"´echelle,?RB.

3-a)Quel d´eplacement virtuel doit-on effectuer? Justifier le choix.

3-b)Exprimer la composante g´en´eralis´eeQθde la tension?T.

3-c)En utilisant le principe des travaux virtuels, montrer que

?T?=1

2Mgcotgθ.

1.1.11Exercice

On consid`ere un cerceau (C) de centreOet de

rayonafaisant partie du plan vertical (Oxy).

SoitABune barre de longueurl=a⎷

3 et dont

les extr´emit´esAetBglissent sans frottement sur (C), voir figure ci-contre. La barreABsup- porte, en plus de son poids, deux massesm1et m

2(m1> m2) assimilables `a deux points ma-

t´erielsM1etM2et situ´ees respectivement aux milieux deAGet deGB,G´etant le centre de masse de la barreAB. On note parθl"angle que fait--→OGavec la verticale. On consid`ere le syst`eme (Σ) form´e par la barre (AB) et les deux masses m

1etm2.

O xy AB

1M2MG(C)

1. Etablir le bilan des forces en relevant les forces de liaison.

2. Identifier les contraintes sur le syst`eme (Σ) et montrer que le nombre de degr´e de

libert´e est ´egal `a 1. En d´eduire la coordonn´ee g´en´eralis´ee `a utiliser.

3. En choisissant un d´eplacement virtuel, ne faisant pas travailler les r´eactions aux

pointsAetB, trouver l"angleθ`a l"´equilibre en fonction deM,m1etm2.

4. On se propose de calculer le module de la r´eaction au pointB. Quel d´eplacement

virtuel doit-on adopter pour annuler le travail de la r´eaction au pointA? En d´eduire la valeur de la r´eaction enBen fonction deM,m1,m2,getθ.

1.1.12Exercice

Consi´erons une fonctionnelleI[y], c"est une fonction de l"espace des fonctions d´eri- vables dansR, qui `a une fonctiony(x) fait correspondre le nombre r´eel

I[y] =?

x2 x

1F(y,y?,x)dx

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices9

o`uy?=dydxetx1,x2les bornes d"int´egration fix´ees. On cherche la fonctionyqui rend la fonctionnelleI[y] extr´emale avec les contraintesy(x1) =y1ety(x2) =y2,y1et y

2donn´es. Soity(x) la solution `a ce probl`eme et l"on note la famille des fonctions

z(x,α) =y(x) +αη(x) o`uη(x) est une fonction d´erivable quelconque.

On d´efinit

I(α) =I[z(x,α)] =?

x2 x 1F? z(x,α),∂z ∂x(x,α),x? dx.

1. Calculer

d˜I dα.

2. Sachant queI[y] est extr´emale sid˜I

dα|α=0= 0, montrer que cela implique ∂F ∂y-ddx? ∂F∂y?? = 0 ce que l"on appelle l"´equation d"Euler.

3. Appliquons cette derni`ere pour revisiter le principe deFermat. La fonctionnelle

est le chemin optiqueLety(x) est la trajectoire de la lumi`ere. Le chemin optique est donn´e parL=?ndso`unest l"indice de r´efraction, que l"on suppose constant, etdsest un ´el´ement de distance dont l"expression est donn´ee pards2=dx2+dy2. En utilisant l"´equation d"Euler, montrer que la trajectoire de la lumi`ere est une droite.

1.1.13Exercice

SoitR(Oxyz) un rep`ere galil´een et soitABune

barre homog`ene pesante de massemet de lon- gueur 2aet de section n´egligeable. L"extr´emit´e

Ade la barre glisse sans frottement le long de

Ozet l"extr´emit´eBglisse sans frottement sur le planOxy. On d´esigne par?l"angle que fait

OBavecOx,θcelui que faitABavecAO. Soit

R

1(Ox1y1z1) le rep`ere relatif tel queOx1est

port´e parOB, voir figure ci-contre. y 1z=z x1x1 y A B OG 1u 2u 3u

1. Faire le bilan des forces dansR.

2. Relever les contraintes et d´eterminer le nombre de degr´es de libert´e.

3. Etablir l"expression de l"´energie cin´etique de la barre.

4. Etablir les expressions des composantes des forces g´en´eralis´ees.

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016quotesdbs_dbs18.pdfusesText_24
[PDF] exercice corrige de travaux de fin d'exercice

[PDF] exercice corrigé dosage acido basique

[PDF] exercice corrigé dosage acido basique pdf

[PDF] exercice corrigé dosage conductimétrique

[PDF] exercice corrigé echangeur de chaleur

[PDF] exercice corrigé égalisation d'histogramme

[PDF] exercice corrigé electrisation

[PDF] exercice corrigé energie mecanique premiere s

[PDF] exercice corrigé entrepreneuriat pdf

[PDF] exercice corrigé espace vectoriel application linéaire

[PDF] exercice corrigé estimateur du maximum de vraisemblance

[PDF] exercice corrigé estimateur sans biais

[PDF] exercice corrigé excel 2007

[PDF] exercice corrige fiabilite avec loi de weibull

[PDF] exercice corrigé fiabilité maintenabilité disponibilité