[PDF] Cours de Statistiques Inférentielles





Previous PDF Next PDF



Cours de Statistiques inférentielles

Cours de Statistiques inférentielles. Pierre DUSART. Page 2. 2. Page 3. Chapitre 1. Lois statistiques. 1.1 Introduction. Nous allons voir que si une variable 



Statistique Inférentielle

et Wonnacott J. Statistique : économie-gestion-sciences-médecine



Introduction à la statistique inférentielle

Plan du cours. 1. Notions de population et d'échantillon. 2. Notion d'estimation. 3. Estimations de la moyenne et de la variance. 4. Ecart type et erreur 



Méthodes de statistique inférentielle.

19 mai 2016 Méthodes de statistique inférentielle. 19 mai 2016. 1 / 166. Plan du cours. 1. Introduction. 2. Probabilités : Variables Aléatoires Continues. 3.



Cours de Statisques descriptives et inférentielles

Pourquoi le titre Statistiques Appliquées `a l'Expérimentation en Sciences Humaines ? En fait la statistique recouvre un vaste domaine d'applications 



ECoPO /Lubumbashi Cours de Statistique Inférentielle

Elle signifie : (p ou q mais pas les deux). Page 5. ECoPO /Lubumbashi. Cours de Statistique Inférentielle. 5. Il 



Cours de Statistiques Inférentielles

Cours de Statistiques Inférentielles. P. Ribereau. I Echantillonage. 1 Mod`ele statistique. On suppose que les variables aléatoires X1



CTU Licence de Mathématiques Statistique Inférentielle Jean-Yves

Ce polycopié contient le cours les sujets d'exercice et leurs corrigés ainsi que les sujets des devoirs proposés. Les énoncés des exercices sont donnés en 



Année Universitaire 2006-2007 COURS DE STATISTIQUE

COURS DE STATISTIQUE INFÉRENTIELLE. (Version Avril 2007). JÉRˆOME DUPUIS o`u T1 et T2 désignent deux statistiques définies sur Xn `a valeurs dans Θ. On ...



Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Nous allons chercher à faire l'inverse : l'inférence statistique consiste à ... Cours Proba-Stat / Pierre DUSART.



Cours de Statistiques Inférentielles

6 janv. 2016 L'objet de ce cours est de présenter les principes de la statistique inférentielle : échantillonage estimation



Polycopié du Cours Statistiques inférentielles

29 nov. 2012 Tandis que la statistique peut être assimilée `a une analyse parfois tr`es précise



ECoPO /Lubumbashi Cours de Statistique Inférentielle

Cours de Statistique Inférentielle. 2. Chapitre 4 : Tests d'hypothèses. 4.1 Hypothèse nulle et Hypothèse alternative. 4.2 Test unilatéral et multilatéral.



Statistique Inférentielle

Modèle Statistique. Estimateurs - Propriétés. Construction d'estimateurs. Estimation par intervalles. Plan du cours. • Introduction. • Modèle Statistique.



Licence SVT 2`eme année Statistiques Inférentielles Examen de

Statistiques Inférentielles. Examen de premi`ere session Janvier 2016. Aucun document autorisé



Cours de Statistiques niveau L1-L2

7 mai 2018 Statistique inférentielle : elle a pour but de faire des prévisions et de prendre des décisions au vu des observations par :.



Cours 4: Statistique inférentielle Échantillonnage

Etude Statistique = étude des caractéristiques (variables statistiques) d'un ensemble d'objets (population composée d'individus) . ? Recensement : les valeurs 



COURS DE STATISTIQUES INFERENTIELLES Licence déconomie

19 sept. 2003 2 Introduction `a la statistique inférentielle ... succ`es obtenus au cours des n épreuves suit la loi binomiale notée B(n p) définie.



Statistiques Inférentielles CM

Course title - Intitulé du cours. Statistiques Inférentielles CM. Level / Semester - Niveau /semestre. L2 / S2. School - Composante. Ecole d'Economie de 

Cours de Statistiques Inferentielles

P. Ribereau

6 janvier 2016

2

Table des matieres

1 Introduction Generale 7

I Intro generale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 II Le recueil des donnees. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 III La statistique exploratoire ou descriptive. . . . . . . . . . . . . . . . . 9 IV La statistique inferentielle. . . . . . . . . . . . . . . . . . . . . . . . . 9 V La modelisation statistique. . . . . . . . . . . . . . . . . . . . . . . . 10 VI Un exemple simple en assurance automobile . . . . . . . . . . . . . . 1 0

2 Statistiques descriptives 13

I Generalites / denitions de base . . . . . . . . . . . . . . . . . . . . . 13 II Resumes numeriques pour des variables quantitatives . . . . . . . . . 14 III Resumes graphiques . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 IV Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0

3 Echantillonage 23

I Modele statistique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1 Generalites . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

2 Modele d'echantillonage. . . . . . . . . . . . . . . . . . . . . .

23

3 Modele domine, vraisemblance . . . . . . . . . . . . . . . . . .

2 5 II Denition d'une statistique . . . . . . . . . . . . . . . . . . . . . . . . 2 5

1 Notions d'estimation et de test d'hypotheses . . . . . . . . . .

26
III Quelques notions de base sur les estimateurs . . . . . . . . . . . . . . 2 7

1 Denition d'un estimateur . . . . . . . . . . . . . . . . . . . .

2 7

2 Notion de biais . . . . . . . . . . . . . . . . . . . . . . . . . .

27

3 Convergence d'un estimateur . . . . . . . . . . . . . . . . . . .

2 7

4 Comparaisons des estimateurs . . . . . . . . . . . . . . . . . .

28

5 Moyenne aleatoire, variance aleatoire . . . . . . . . . . . . . .

28
IV Rappels sur les vecteurs gaussiens . . . . . . . . . . . . . . . . . . . . 29

1 Vecteurs gaussiens et lois du2. . . . . . . . . . . . . . . . . .31

V Application a l'estimation dans un cadre normal . . . . . . . . . . . . 3 2

4 Estimation 35

I Hypotheses fondamentales sur la densitef(x;) . . . . . . . . . . . .3 5 II Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6

1 Information de Fisher . . . . . . . . . . . . . . . . . . . . . . .

36

2 Proprietes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37
3

4TABLE DES MATIERES

III Inegalite de Cramer-Rao . . . . . . . . . . . . . . . . . . . . . . . . . 37

1 Hypotheses supplementaires . . . . . . . . . . . . . . . . . . .

3 7

2 Relation entre estimateurs ecaces . . . . . . . . . . . . . . .

39

3 Degradation de l'information . . . . . . . . . . . . . . . . . . .

3 9 IV Notion d'exhaustivite . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 V Exhaustivite et estimateurs ecaces; la famille exponentielle . . . . . 4 1

1 Le modele exponentiel . . . . . . . . . . . . . . . . . . . . . .

4 1

2 Theoreme sur l'ecacite . . . . . . . . . . . . . . . . . . . . .

42
VI Quelques methodes usuelles d'estimation . . . . . . . . . . . . . . . . 4 3

1 Methode empirique . . . . . . . . . . . . . . . . . . . . . . . .

4 3

2 Methode des moindres carres . . . . . . . . . . . . . . . . . .

44

3 Methode des moments . . . . . . . . . . . . . . . . . . . . . .

4 4

4 Methode du maximum de vraisemblance : principe . . . . . .

45
VII Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6 VIII Generalisation au cas d'un parametre multidimensionnel . . . . . . . 47

1 Generalisation des denitions sur les estimateurs . . . . . . . .

4 7

2 Generalisation de l'inegalite de Cramer-Rao . . . . . . . . . .

48

3 Generalisation de la methode du maximum de vraisemblance .

5 0

5 Comportement asymptotique des estimateurs 53

I Proprietes asymptotiques de l'EMV . . . . . . . . . . . . . . . . . . . 5 3

1 En dimension 1 . . . . . . . . . . . . . . . . . . . . . . . . . .

5 3

2 En dimension superieure . . . . . . . . . . . . . . . . . . . . .

54
II Denitions / outils . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4

1 Normalite et ecacite asymptotique . . . . . . . . . . . . . .

54

2 Proprietes de convergence . . . . . . . . . . . . . . . . . . . .

55

3 Methode Delta . . . . . . . . . . . . . . . . . . . . . . . . . .

55
III Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Estimation par intervalle de conance 57

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 II I.C. pour les parametres de la loi normale . . . . . . . . . . . . . . . 5 9 III I.C. pour une proportion (parametre de la loi binomiale) . . . . . . . 6 0 IV Construction d'I.C. asymptotiques . . . . . . . . . . . . . . . . . . . . 6 1

1 Utilisation du theoreme central limite . . . . . . . . . . . . . .

6 1

2 Application a la loi binomiale. . . . . . . . . . . . . . . . . . .

62

3 Utilisation de la convergence de l'EMV . . . . . . . . . . . . .

62

4 Remarque sur l'intervalle de conance pour une variance hors

du cadre normal . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 V Recherche de regions de conance . . . . . . . . . . . . . . . . . . . . 64
VI Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4

7 Generalites sur les tests 67

I Problemes de test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 II Tests uniformement plus puissants . . . . . . . . . . . . . . . . . . . . 68
III Tests fondes sur le rapport du maximum de vraisemblance . . . . . . 7 1 IV Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

TABLE DES MATI

ERES5

1 Adequation d'une moyenne pour un echantillon gaussien . . .

7 2

2 Comparaison de deux moyennes . . . . . . . . . . . . . . . . .

7 3

3 Un exemple avec une loi discrete . . . . . . . . . . . . . . . .

74
V Tests asymptotiques . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5

1 Proprietes asymptotiques des tests du maximum de vraissem-

blance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2 Tests de Wald et du score . . . . . . . . . . . . . . . . . . . .

7 7

8 Tests parametriques classiques 79

I Tests gaussiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 9 II Tests asymptotiques . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1

9 Quelques tests non parametriques 83

I Tests du2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 3

1 Loi multin^omiale . . . . . . . . . . . . . . . . . . . . . . . . .

83

2 Loi asymptotique . . . . . . . . . . . . . . . . . . . . . . . . .

83

3 Test du2d'adquation a une loi . . . . . . . . . . . . . . . .8 5

4 Test du2d'independance . . . . . . . . . . . . . . . . . . . .8 6

II Test de Kolmogorov-Smirnov . . . . . . . . . . . . . . . . . . . . . . 88
III Test de Shapiro-Wilk . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

1 Droite de Henry . . . . . . . . . . . . . . . . . . . . . . . . . .

90

2 Test de Shapiro-Wilk . . . . . . . . . . . . . . . . . . . . . . .

9 0 IV Tests de rang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2

1 Statistiques de l'ordre, de rang . . . . . . . . . . . . . . . . . .

93

2 Le test de Wilcoxon . . . . . . . . . . . . . . . . . . . . . . .

9 3

10 Exemples d'estimation non parametrique 95

I Estimation d'une densite de probabilite . . . . . . . . . . . . . . . . . 95

1 Histogramme empirique . . . . . . . . . . . . . . . . . . . . .

9 5

2 Fen^etres mobiles . . . . . . . . . . . . . . . . . . . . . . . . .

95

3 Versions lisses . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 6

4 Un exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 6 II Estimation des quantiles . . . . . . . . . . . . . . . . . . . . . . . . . 99

1 Quantiles empiriques . . . . . . . . . . . . . . . . . . . . . . .

9 9

2 Lien avec les statistiques d'ordre . . . . . . . . . . . . . . . . .

99

3 Resultats asymptotiques . . . . . . . . . . . . . . . . . . . . .

99

6TABLE DES MATIERES

Chapitre 1

Introduction Generale

I Intro generale

Denition 1.1 (Premiere denition d'un probl

~Ame statistique)On dira qu'on se trouve devant un probleme statistique si on est c onfronte ades eventualites(en nomb reni ou inni) dont on sait q ue certaines sont vrais sans savoir lesquelles, on doit choisir une de c es eventualites, en s'appuyant sur le r esultatd'une exp erienceal eatoire, eventuellement a denir. La derniere partie de la denition par le d'experience aleatoire. Cette partie la (qui concerne la majorite du cours) est la statistique inferentielle, mathematique ou inductive. On va encore restreindre la denition pour denir le champs du cours et introduire la notion de modele statistique. Pour pouvoir tirer quelque chose du resul- tat de l'experience aleatoire, il faut qu'a chaque eventualite, on fasse correspondre une famille de probabilite a laquelle la proba qui regit l'experience appartient (si cette eventualite est vraie). On notePl'ensemble de toutes les probas possibles. Denition 1.2On appelle modele statistique le triplet(X;A;P)ou : |Xest l'ensemble appele ensemble fondamental ou espace des resultats, |Aest une tribu de partie deX, |Pest une famille de probabilites sur l'espace mesurable(X;A). Denition 1.3On appelle modele statistique parametrique un modele statistique (X;A;P)tel que

9p2N:P=fP;2Rpg

est appele l'espace des parametres. Le modele est aussi note(X;A;P;) Les grands problemes statistiques les plus frequents sont : d ansl em odelest atistiquep arametrique,l es\ eventualites"so ntr epresentees par le parametrelui m^eme. Comment choisir le? C'est l'estimation ponc- tuelle. Probleme d'identiabilite (si1et2sont tels queP1=P2alors on ne pourra jamais choisir entre les deux) : il faut que l'application!Psoit injective. 7

8CHAPITRE 1. INTRODUCTION GENERALE

Probleme statistique

9

Utilisant unmodele aleatoireX

XXXXXXXXXz

N'utilisant pas un

modele aleatoire- Stat. desc.- Analyse des donnees...?

Avant le choix del'experience et du

modele- Plans d'experiences - sondages...X

XXXXXXXXXz

Apres le choix de

l'experience et du modeleX

XXXXXXXXXz

Modele non parametrique?

Modele parametrique

(identication)X

XXXXXXXXXz

Decisions multiples@

@@R Test?

Estimationensembliste

9

EstimationponctelleQ

QQQQQQs?

Modele lineaireGLM...Figure1.1 { Approche d'un probleme statistique

II. LE RECUEIL DES DONN

EES.9 T oujoursd ansce m odele,l 'ensembled eseventualitesest l 'ensembled esp arties de . Estimation ensembliste. on a d eux eventualitesd ontu neseu lees tv raie.Pr oblemed et ests! Pour en revenir au probleme statistique, commentons la Figure 1.1 : La demarche statistique consiste a traiter et a interpreter les informations recueillies par le biais de donnees. Elle comporte quatre grands aspects : le recueil des donnees, l'aspect descriptif ou exploratoire, l'aspect inferentiel ou decisionnel et la modelisa- tion statistique.

II Le recueil des donnees.

Cette etape est importante car elle doit permettre d'obtenir des donnees de \bonne qualite" en un certain sens. Contrairement a ce qu'indique le vocabulaire, les informations dont a besoin le statisticien ne sont pourtant pas \donnees" et la qualite des resultats obtenus dependra autant de la maniere dont les donnees ont ete collectees que de la methode statistique utilisee ensuite. La theorie des sondages et celle des plans d'experiences fournissent un cadre theorique pour une collecte optimale de donnees.

III La statistique exploratoire ou descriptive.

Une fois les donnees collectees, il convient de synthetiser et de resumer l'in- formation contenue dans ces donnees. On utilise pour cela des representations des donnees sous forme de tableaux, de graphiques ou d'indicateurs numeriques (tels que la moyenne, la variance, la correlation lineaire, ...pour des variables quantitatives). Cette phase est connue sous le nom destatistique descriptive. On parle de statistique descriptiveunivarieelorsque l'on regarde une seule variable, de statis- tique descriptivebivarieelorsque l'on regarde simultanement deux variables, et de statistique descriptivemultidimensionnellelorsque l'on regarde simultanementpva- riables. Dans ce dernier cas, on parle aussi d'analyse des donnees.

IV La statistique inferentielle.

Son but est d'etendre (d'inferer) les proprietes constatees sur l'echantillon (gr^ace l'analyse exploratoire par exemple) a la population toute entiere, et de valider ou d'inrmer des hypotheses. Contrairement a la statistique exploratoire, des hypotheses probabilistes sont ici necessaires : elle suppose un modele probabiliste. L'estimation ponctuelle ou par intervalle de conance et la theorie des tests d'hypotheses constituent une partie principale de la statistique inferentielle.

10CHAPITRE 1. INTRODUCTION GENERALE

V La modelisation statistique.

Elle consiste en general a rechercher une relationapproximativeentre une variable et plusieurs autres variables, la forme de cette relation est le plus souvent lineaire. Lorsque la variable a expliquer est quantitative et que les variables explicatives sont aussi quantitatives, on parle deregression lineaire. Si les variables explicatives sont qualitatives, on parle alors d'analyse de la va- riance. Lemodele lineaire generalenglobe une grande partie de tous les cas de gures possibles.

VI Un exemple simple en assurance automobile

Un assureur souhaite evaluer s'il est pertinent de tarifer ses contrats d'assurance auto en fonction de la region d'habitation de l'assure. Il dispose de deux echantillons d'assures : 1 500 assures de la region Nord - Pas de Calais et 1 249 assures de la region Provence - Alpes - C~Ate d'Azur. Sur l'annee 2008, les 1 500 assures de la region Nord - Pas de Calais consideres ont declare 89 sinistres pour un montantquotesdbs_dbs18.pdfusesText_24
[PDF] Probabilités et Statistiques, polycopié de L3 - Département de

[PDF] Probabilités et Statistique

[PDF] 10h45-11h: Les statistiques sanitaires et la santé publique Dr - HCP

[PDF] Statistique spatiale

[PDF] Statistiques : moyenne, médiane et étendue - KeepSchool

[PDF] Première S - Statistiques descriptives - Variance et écart - Parfenoff

[PDF] Second degré, cours, première STI2D - MathsFG - Free

[PDF] cours de premiere sti2d - Les fonctions : généralités

[PDF] LISTE DES LIVRES Classe de Terminale STI2D

[PDF] Cours STMS - SBSSA - Rouen

[PDF] Cours stratégie d 'entreprise - f-staticcom

[PDF] Définir une stratégie de communication Télécharger le pdf

[PDF] La langue française, de A ? Z - Direction de la Langue Française

[PDF] Première ES Cours suites numériques 1 I Généralités sur les suites

[PDF] Cours de Terminale STG