[PDF] ENTISAR ABDUL-LATIF ALI Etude locale de systèmes contrôles de





Previous PDF Next PDF



Calcul de la profondeur du MOHO

Les ondes PmP sont des ondes P qui se réfléchissent au niveau du Moho avant d'arriver à la station. Schématisation du trajet des ondes sismiques P et PmP.



PROJECT MANAGEMENT CLOSES

22 ???? 2019 Onde the Colliers team delivered project management and owner's ... approaches



ENTISAR ABDUL-LATIF ALI Etude locale de systèmes contrôles de

the classic one: we define it locally by the data of two vector fields that The PMP gives necessary conditions for a curve to be a minimizer. In our.



EMERALD_REGE_REGE624769 180..195

Contingency approaches in project management Academic production databases



Complete issue More information about this article Journals

A contingency approach to project management. Ricardo Antônio Câmara Emerson Antonio Maccari



World Bank Document

Plan shall be prepared based on the principles defined in this PMP. Mundial



Manual de Instruções EUROPOWER PMP6000 PMP4000 PMP1000

Com este aparelho possui um moderno Power Mixer que define novos critérios. informação acerca dos locais onde poderá deixar o seu.



Código de Ética e Conduta Profissional do PMI

O Código define os ideais aos quais aspiramos é um ambiente onde diversas perspectivas e pontos de vista são incentivados e valorizados.



Pest Management Plan

Plan shall be prepared based on the principles defined in this PMP. agricultura comercial é caracterizada pela prática da monocultura onde o problema ...



Local contact sub-Finslerian geometry for maximum norms in

1 ????? 2019 For our problem it takes the following form. Theorem 2 (PMP). Let define the Hamiltonian: H(q ?



[PDF] Calcul de la profondeur du MOHO

Les ondes PmP sont des ondes P qui se réfléchissent au niveau du Moho avant d'arriver à la station Schématisation du trajet des ondes sismiques P et PmP 1° - 



Calcul de la profondeur du Moho - SVT Lyon

Arrivée des ondes PMP à 3 h 12 min 19583 s Arrivée des ondes S à 3 h 12 min 24933 s Retard des ondes PMP ?t = 309 s Profondeur du Moho H = 341 km 



[PDF] Géophysique

- Les ondes PmP sont des ondes P qui se réfléchissent au niveau du Moho avant d'arriver à la station Schématisation du trajet des ondes sismiques P et PmP 



La profondeur du Moho est donnée par léquation - DocPlayerfr

L'écart de temps entre l'arrivée des ondes P directes et des ondes PMP permet de calculer l'écart de distance parcourue et ainsi de calculer la profondeur du 



Ondes P S de surface Quelles différences ? - Futura Sciences

9 sept 2021 · Les ondes P sont des ondes longitudinales ou compressives ce qui veut dire que les particules de matièrematière sont déplacées dans la 



[PDF] TITRE : Evolution du Moho dans la région des Alpes du Sud

Cette étude de cas permet de comprendre comment les ondes de volume P après avoir été réfléchies sur la discontinuité du Moho (PmP) rejoignent la surface 



[PDF] TP 1 : Les apports de la sismologie Situation initiale

Matériel : logiciels sismolog et excel I – Les ondes sismiques 1 – Quelques définitions simples – Qu'est-ce qu'un séisme ? (causes – conséquences) ?



[PDF] Ondes sismiques et structure du globe - Blogpeda

Ces ondes sont alors appelées ondes PmP • On cherche à déterminer la profondeur de cette surface de discontinuité Connaissant h la profondeur du foyer 

Les ondes PmP sont des ondes P qui se réfléchissent au niveau du Moho avant d'arriver à la station. Schématisation du trajet des ondes sismiques P et PmP. 1° - 
  • Qu'est-ce que les ondes PMP ?

    Les ondes P sont celles qui arrivent directement à la station d'enregistrement. Les ondes PmP sont des ondes P qui se réfléchissent au niveau du Moho avant d'arriver à la station.
  • C'est quoi les ondes ?

    Les ondes S, elles, sont des ondes cisaillantes : les matériaux traversés sont distordus puis retrouvent leur forme initiale. Ces ondes ne peuvent donc se propager que dans les milieux qui offrent une résistance à la distorsion, c'est-à-dire les solides.
  • Quelle est la différence entre les ondes P et S ?

    Les ondes P (ondes de compression) qui provoquent un changement de volume avec des mouvements avant-arrière. Ce sont les plus rapides, elles se propagent dans les solides, les liquides et les gaz. Les ondes S (ondes de cisaillement) qui provoquent un changement de forme avec des mouvements perpendiculaires.
  • ondes P ou ondes primaires, appelées aussi ondes de compression ou ondes longitudinales. Le déplacement du sol qui accompagne leur passage se fait par dilatation et compression successives, parallèlement à la direction de propagation de l'onde. Ce sont les plus rapides (6km.
ENTISAR ABDUL-LATIF ALI Etude locale de systèmes contrôles de

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA

COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES

Spécialité : Mathématiques

Arrêté ministériel : 25 mai 2016

Présentée par

ENTISAR ABDUL-LATIF ALI

Thèse dirigée par Grégoire CHARLOT, Maître de conférences, U G A préparée au sein du Laboratoire Institut Fourier dans l'École Doctorale Mathématiques, Sciences et technologies de l'information, Informatique

Etude locale de systèmes contrôles de type

sous-finslerien.

Local study of sub-Finslerian control

systems Thèse soutenue publiquement le 31 janvier 2017, devant le jury composé de :

Monsieur GREGOIRE CHARLOT

MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES,

Directeur de thèse

Monsieur YACINE CHITOUR

PROFESSEUR, UNIVERSITE PARIS-SUD, Rapporteur

Monsieur FREDERIC JEAN

PROFESSEUR, ENSTA ParisTech - PALAISEAU, Rapporteur

Monsieur HERVE PAJOT

PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Président

Monsieur MARIO SIGALOTTI

CHARGE DE RECHERCHE, INRIA SACLAY- ÎLE DE-FRANCE,

Examinateur

Monsieur CONSTANTIN VERNICOS

MAITRE DE CONFERENCES, UNIVERSITE DE MONTPELLIER,

Examinateur

Remerciements

Mes remerciements vont d'abord a mon directeur de these Gregoire Char- lot, pour m'avoir propose de travailler dans ce domaine de recherche passion- ant et tres actif. Il a su trouver un sujet tres riche, et orienter mes recherches au cours des annees de questions assez simples vers des objectifs plus am- bitieux. Lors de ces annees, vous avez toujours ete a mes cotes pour me soutenir, me proposer des idees geniales et m'encourager. Vous m'avez aide a ameliorer mon Francais. Votre passion, votre opti- misme et les discussions entre nous m'ont ete tres protables. Pour tout cela je vous remercie mille fois. C'est un grand honneur pour moi que Yacine Chitour et Frederic Jean aient accepte d'^etre rapporteurs de ma these. Je les remercie chaleureusement pour l'inter^et qu'ils ont porte a mes travaux, ainsi que Herve Pajot, Mario Sigalotti et Constantin Vernicos qui ont accepte de faire partie de mon jury de these. Je remercie egalement l'Institut Fourier pour son accueil pendant ces annees, et pour tout. Je remercie tout particulierement tous les adminis- tratifs, Zilora, Geraldine Rahal, et les sucretaires de l'IF qui m'ont aidee a resoudre beaucoup de questions. Je remercie tout particulierement mes soeurs, pour leur soutien. Et - nalement, c'est a mon mari Bashar que je dois le plus, pour son soutien et sa presence a mes c^otes dans les moments diciles. Si je suis arrivee jusqu'ici, c'est en grande partie grace a lui. Et a mes petites lles, Juna et Mayar, pour tout !

Contents

Introduction 9

1 Sub-Finslerian Structures 13

1.1 The Point of View of Dierential Geometry . . . . . . . . . . .

1 3

1.1.1 The constant rank case . . . . . . . . . . . . . . . . . .

13

1.1.2 A more general denition . . . . . . . . . . . . . . . .

14

1.1.3 The Problems we are considering in this thesis . . . . .

14

1.2 The Point of View of control . . . . . . . . . . . . . . . . . . .

15

1.3 General Properties . . . . . . . . . . . . . . . . . . . . . . . .

16

1.3.1 Controllability . . . . . . . . . . . . . . . . . . . . . . .

16

1.3.2 Existence of Minimizers . . . . . . . . . . . . . . . . .

16

1.3.3 Pontryagin Maximum Principle . . . . . . . . . . . . .

17

1.3.4 Switching . . . . . . . . . . . . . . . . . . . . . . . . .

18

1.3.5 Switching inR2. . . . . . . . . . . . . . . . . . . . . .18

1.3.6 Switching inR3. . . . . . . . . . . . . . . . . . . . . .19

1.3.7 Singular extremals . . . . . . . . . . . . . . . . . . . .

19

1.4 Normal forms inR2andR3. . . . . . . . . . . . . . . . . . .20

1.4.1 Thom Transversality Theorem . . . . . . . . . . . . . .

21

1.4.2 Generic properties inR2. . . . . . . . . . . . . . . . .22

1.4.3 Normal form on 2D . . . . . . . . . . . . . . . . . . . .

25

1.4.4 Normal form in dimension 3 . . . . . . . . . . . . . . .

26

1.5 Optimal syntheses . . . . . . . . . . . . . . . . . . . . . . . . .

27

2 Optimal Synthesis in R

229

2.1 Initial conditions and their parametrization . . . . . . . . . . .

29

2.1.1 Dierent types of extremals . . . . . . . . . . . . . . .

29

2.1.2 Privileged coordinates and nilpotent approximation . .

30

2.1.3 Parametrization of the initial conditions . . . . . . . .

31

2.2 Describing the optimal synthesis . . . . . . . . . . . . . . . . .32

2.2.1 Symbols of extremals . . . . . . . . . . . . . . . . . . .

32

2.2.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . .

32

2.3 (NF1) case . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

2.3.1 Synthesis in the rst quadrant . . . . . . . . . . . . . .

34

2.4 (NF2a) case . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

2.5 (NF2b) case . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

2.6 (NF3) case . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

3 Optimal Synthesis in R

341

3.1 Nilpotent case . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

3.2 Extremals withjzj>>1 . . . . . . . . . . . . . . . . . . . .44

3.2.1 Hamiltonian equations . . . . . . . . . . . . . . . . . .

44

3.2.2 Conjugate locus . . . . . . . . . . . . . . . . . . . . . .

46

3.2.3 Cut locus . . . . . . . . . . . . . . . . . . . . . . . . .

48

3.3 Extremals with only one control switching several times . . . .

52

3.3.1 Cut locus generated by extremals withz(0)0 . . .56

Introduction

Sub-Finslerian geometry is a generalization of both sub-Riemannian and Finslerian geometry. To dene such a structure you need to x a connected manifoldM, a distribution onMand a norm on . An admissible curve for such a structure is, as in sub-Riemannian geometry, an absolutely contin- uous curve almost everywhere tangent to the distribution and its length is, as in Finsler geometry, the integral of the norm of its speed. Under a good condition of non integrability of any two points ofMare connected by an admissible curve and the distance between these two points is the inmum of the lengths of the admissible curves joining the two points. From the eighties, the mathematical activity around sub-Riemannian ge- ometry is very important and increasing. The list of publications is very large and a survey is not the object of this thesis. Let focus on some publications that motivated the same kind of work in sub-Riemannian geometry as the one we are presenting here for sub-Finslerian metrics. At the end of the eighties, G. Ben Arous and R. Leandre published a series of articles (see [9, 17, 18, 8]) with new results on the asymptotics of the heat kernel in sub-Riemannian geometry on the model of the one of Molcanov [19] in Riemannian geometry. These results, giving information outside the cut locus in absence of abnormal extremals, motivated several works on the local synthesis of sub-Riemannian structures in the contact case (see [2, 15, 4])and the Martinet case (see [11, 10]) in dimension three and the quasi-contact case (see [14]) in dimension four. In this thesis, we make the same work in the sub-Finslerian context, when the norm is a maximum norm, in dimension two and three. The local optimal synthesis is investigated, with a focus on the evaluation of the rst conjugate locus and of the cut locus. In the case of the dimension two, the notion of distribution is larger than the classic one: we dene it locally by the data of two vector elds, that 9

10CONTENTS

can become parallel along a submanifold ofM. The study we produce here of such structures uses techniques developed in [12] to dene objects that are very useful to analyze the dynamics, but also techniques developed in [2, 15, 4] in the sub-Riemannian context to compute jets of the extremals with large initial conditions. This thesis is organized in three parts. The rst part contains denitions and theorems in geometry and control which are used throughout the thesis. It also present results that are commune to the two cases treated in the following parts. The second part deals with the local optimal synthesis in dimension 2: we construct a normal form and describe the generic local synthesis. The third part concerns the dimension 3 when the distribution is contact: we build a normal form and describe the local synthesis. In chapter 1, in section 1.1 and 1.2 we dene the notion of sub-Finslerian structure and present the case of maximum norm we treat in this manuscript. In section 1.3, we recall classical results about controllability, existence of local minimizers, and the Pontryagin Maximum Principle which is a necessary condition theorem on curves to be optimal, that is to realize the distance. In the same section, we also present the notion of switching and the tools to study it, in particular switching functions and their properties, and the notion of singular control. In section 1.4 we recall the notion of genericity, present a list of generic properties in dimension 2 and construct a normal form in the two cases we are studying : the generic case in dimension 2 and the contact case in dimension 3, generic in a weaker sense. In chapter 2, we study the local optimal synthesis in dimension 2. It may look quite simple but the zoology is quite rich. In section 2.1 we present the nilpotent cases. They play the role of model of the dynamics, as do the euclidean case in Riemannian geometry. In section 2.2 we describe the eect on the invariants of the choice of the vector elds used to dene the control system. For exampel the eect of choosingG1instead ofG1. In sections 2.3 to 2.6, we describe the synthesis in dierent cases appearing in the normal form. Conditions on the invariants are given for the existence of a local cut locus. In chapter 3, we study the local optimal synthesis in dimension 3 when the distribution is contact. In section 3.1, we study the nilpotent case. This last one was partially studied in the article [13]. Here we dene and describe the rst conjugate locus, and we describe the Maxwell set and the cut locus. The cut time and the Maxwell time in the nilpotent case give a good estimation of

CONTENTS11

the cut time in the generic cases for the extremals with large initial condition. In section 3.2 we describe the conjugate and the cut loci in the generic case (in a restricted sense with respect to the one in the study of the dimension

2). In section 3.3 we describe the synthesis corresponding to extremals that

switch several times on only one control, and, when it happens, the cut locus generated by these extremals.

Chapter 1

Sub-Finslerian Structures

In this chapter, we dene the structures we are going to study with both dierential and control points of view in sections 1.1 and 1.2, we recall Chow- Rashevsky theorem and Filippov theorem in subsections 1.3.1 and 1.3.2. In subsection 1.3.3 we give the formulation of Pontryagin Maximum Principal, an important tool. In subsections 1.3.4 to 1.3.7 we discuss switching and give rst necessary conditions to the existence of singular curves. In section 1.4 we recall Thom transversality theorem and use it to construct normal forms in dimension 2 and 3.

1.1 The Point of View of Dierential Geom-

etry

1.1.1 The constant rank case

In general, the data of a sub-Finsler structure is the data of a triplet (M;;) whereMis a manifold, is a distribution onM, that is a sub-bundle of

TM, andis a norm on .

Once dened such a structure, one can dene admissible curves as abso- lutely continuous curves such that _ (t)2 (t)a.e. For such a curve dened on [0;T], we dene its length: ) =Z T 0 (_ (t))dt: 13

14CHAPTER 1. SUB-FINSLERIAN STRUCTURES

If any two points ofMare linked by an admissible curve, that is if the structure is controllable, we can dene a distance onMby d(q;q0) = inff`( )j admissible; (0) =q; (T) =q0g

1.1.2 A more general denition

It happens that it may be natural to consider dynamical systems where is no more a sub-bundle of constant rank but is a more general structure. For example, the Grushin structure onR2where is dened as spanf@@ x;x@@ yghas such property. One way to dene geometrically such a structure is the following: a sub- Finslerian structure is now dened by (M;E;;f;) whereMis a manifold, :E!Mis a vector bundle,f:E!TMis a morphism of vector bundle (in particular ifv2Eqthenf(v)2TqM) andis a norm (as dened below) onE. In general, one add the assumption that the mapf, induced byf on (E) byf() =f, is one-to-one from (E) toV ec(M). We denote q=f(Eq). In this context, a curve is said admissible if _ (t)2 (t)for a.e.t. Forv2q,(v) := inff(X)jX2Eq;f(X) =vg. The denitions of length and distance are unchanged. The dimension of the ber ofEis called rank of the structure. Denition 1(Maximum norm).InRna maximum norm is a norm such that exists a linear coordinate system (x1;;xn) s.t j(x1;;xn)j= maxfjxij;ing In the sub-Finslerian context, we say that the normis a maximum norm if8q2Mexists a linear coordinate system (vi;;vn) onEq(or q) such that8X= (v1;;vn)2Eqthen(X) = maxi=1;;nfjvijg.

1.1.3 The Problems we are considering in this thesis

In this thesis, we studied locally two class of SF structures dened with a maximum norm: 1.

SF structure of ra nk2 on 2 dmanifolds,

2. SF structure of ra nk2 on 3 dmanifolds for con tactdistributions.

1.2. THE POINT OF VIEW OF CONTROL15

In the rst case, the distribution may have non constant rank, if the mapf is not one-to-one even iffis one-to-one. In the second case, we assume thatfis one-to-one and moreover we assume that , which is a sub-bundle, satises [;] =TMlocally. In both cases, since we are interested in the local study of such structures, we may assume thatM=Rn(n=2 or 3) or even a neighborhood of 0 inRn.

Moreover, we consider only maximum norms.

1.2 The Point of View of control

To dene with a control point of view the previous structures, we proceed as follows. Let give a manifoldM(orRnif we have only local) and (F1;;Fk) bekvector elds dened onM. The control system we are going to consider is _q(t) =kX i=1u i(t)Fi(q(t));(1.1) where the functionsuiare measurable functions such that max i=1;;kfjui(t)jg 1;for a.e. t. (1.2) An admissible curve is dened by the fact that it is an absolutely con- tinuous curve s.t _ (t)2spanfF1;:::;Fkgfor a.e.t. It is said to be optimal betweenqandq0if (0) =q; (T) =q0andTis the inmum of time necessary to join the two points under the constraint maxfjuijg 1.

We dene

q= spanfFi(q)gand the maximum norm associate to this family on qby jXj= infu( max i=1;;k( juij jX=mX i=1u iFi(q)))

We dene the length of an admissible curve by

) =Z T 0 j_ (t)jdt and ifj_ (t)j= 1 for a.e.t,`( ) is equal to the time necessary to follow the curve. If the system is controllable, we can dene the distance as d(q;q0) = inff`( )j admissible and (0) =q; (T) =q0g:

16CHAPTER 1. SUB-FINSLERIAN STRUCTURES

1.3 General Properties

We introduce some general properties as the local controllabity by Chow- Rashevsky theorem, the existence of minimizer by Filippov theorem, the Pontryagin Maximum Principle theorem, conditions on switching controls and the denition of switching functions and singular extremals. Recall that in the following we are going to consider only the two cases: the distributions of rank 2 inR2; the contact distributions inR3that is subbundle ofTR3such that 2=TR3.

1.3.1 Controllability

For such systems the classical theorem concerning local controllablity is Theorem 2(Chow, Rashevsky, 1938).LetMbe a smooth manifold and X

1;:::;Xmbemsmooth vector elds onM. Assume that

LiefX1;:::;Xmg(q) =TqM;8q2M

then the control system _q=mX i=1u iXi(q) is locally controllable in any time at every point ofM.

In the systems we are going to consider,

qor 2qor 3qis equal toTqM hence the system is controllable.

1.3.2 Existence of Minimizers

Once answered the question of controllablity, it is natural to try to check that the distance is realized that is that between two given points the distance is realized by a minimizer. The classical result is Filippov theorem, which in our context take the form Theorem 3(Filippov, in the SF context).LetMbe a locally compact bracket generating sub-Finslerian manifold. Since at each pointqthe unit ballBq T qMis convex and compact, and since for allR >0the set of points of distance less or equal toRhas compact closure, then for allq02Mexists a minimizer realizing the distance: d(q;q0) = minf`( admissible; (0) =q; (T) =q0g:

See [1] for the proof.

1.3. GENERAL PROPERTIES17

1.3.3 Pontryagin Maximum Principle

The PMP gives necessary conditions for a curve to be a minimizer. In our context, it gives: Theorem 4(Pontryagin Maximum Principle).Consider the control system (1.1) subject to (1.2). Let dene the Hamiltonian as follows. For every (q;;u;0)2TM[1;1]kR, the Hamiltonian is dened by

H(q;;u;0) :=u1< ;F1(q)>+u2< ;F2(q)>+0:

Ifq(:) : [0;T]!Mis a time optimal trajectory corresponding to a control u(:) : [0;T]![1;1]2, then there exist a never vanishing Lipschitz continu- ous covector(:) :t2[0;T]!(t)2Tq(t)Mand a constant00such that for a.et2[0;T], we have

1.(t)6= 0,8t;

2._q(t) =@H@

(q(t);(t);u(t);0), for a.e.t; 3. _(t) =@H@q (q(t);(t);u(t);0), for a.e.t;

4.H(q(t);(t);u(t);0) =HM(q(t);(t);0), for a.e.t; where

H

M(q(t);(t);0) =maxfH(q;;u;;0) :u2[1;1]2g

5.HM(q(t);(t);0) = 0:

Denition 5.The map: [0;T]!Tx(t)Mis called covector. A trajectory x(:) satisfying conditions 1, 2, 3, 4 and 5 is called an extremal (resp. a couple (x(:);(:)) is called an extremal pair). If (x(:);(:)) satises moreover

0= 0 (resp.0<0), then it is called an abnormal extremal (resp. a normal

extremal). An extremal is said to be nontrivial if it does not correspond to controls a.e vanishing. Notice that a trivial extremal is an abnormal extremal. Remark6.In all the situations we are going to study, except at isolated points,

2=TM. It is a well known fact that in this case there is no non

trivial abnormal extremal hence we can assume0=1.

18CHAPTER 1. SUB-FINSLERIAN STRUCTURES

1.3.4 Switching

In this section we are interested to give properties of optimal trajectories and to determine when the controls switch from +1 to1 or viceversa and when they may assume values in ]1;+1[. Moreover, we would like to predict which kind of switching can happen by using properties of the vector elds F i. Along an extremal, if< (t);Fi(x(t))>>0 (resp.<0) thenui(t) = 1 (resp.ui(t) =1). It is a direct consequence of the PMP. This motivates the introduction of the switching functionsi: Denition 7.For an extremal triplet (q(:);(:);u(:)), dene the switching functions i(t) =< (t);Fi(q(t))>;i= 1;2:

Thanks to0=1, theifunctions satisfy

u

1(t)1(t) +u2(t)2(t) = 1;for a.e.t:

Remark8.Notice that thei(:) are at least Lipschitz continuous. A direct consequence of the maximality condition is Proposition 9.Ifi(t)>0(resp.i(t)<0) thenui(t) = 1(resp.ui(t) = 1). Ifi(t) = 0and_i(t)>0(resp._i(t)<0) thenichanges sign at time tand the controluiswitches from1to+1(resp. from+1to1). Dening3(t) =< (t);[F1;F2](q(t))>then one computes easily that _

1(t) =u2(t)3(t) and_2(t) =u1(t)3(t);for a.e.t:

1.3.5 Switching in R

2 In the caseR2, let dene the following sets. We denote Athe set of points whereF1andF2are parallel, 1the set of points whereF1is parallel to [F1;F2] and 2the set of points whereF2is parallel to [F1;F2].

Outside

A, one can dene the functionsf1andf2by

[F1;F2] =f2F1f1F2:

Then, outside

A, at a timetwhere1(t) = 0 we get

_

1(t) =u2(t)3(t) =u2(t)f1(q(t))2(q(t))

1.3. GENERAL PROPERTIES19

and ifq(t)=21thenf1(q(t))6= 0 and the sign of_1(t) is given by the sign off1(q(t)). And at time where2(t) = 0 then the sign of_2(t) is given by the sign off2(q(t)). Hence, outside A[1[2, the signs of the functions f

1andf2determine the possible switches of the control functions.

1.3.6 Switching in R

3 In the case ofR3, the hypothesis that we are considering the contact case allows to claim that (F1;F2;[F1;F2]) form a frame ofTR3at each point. Hence, if we denoteF3= [F1;F2],F4= [F1;F3], andF5= [F2;F3] then we can dene the six functionsfij,i= 1;2,j= 1;2;3, by F

4=f41F1+f42F2+f43F3; F5=f51F1+f52F2+f53F3:

and dene4=< ;F4>and5=< ;F5>. Then one computes easily that _

3=u1(f411+f422+f433) +u2(f511+f522+f533):

1.3.7 Singular extremals

Denition 10.A nontrivial extremal trajectoryq(:) is said to beui-singular ifi(:) = 0 along it. Let us introduce denitions to describe dierent types of controls Denition 11.We callbangan extremal trajectory corresponding to con- stant controls with value 1 or1 andbang-bangan extremal which is a nite concatenation of bangs. A timetis said to be aswitching timeifuis not bang in any neighborhood oft. Similarly,tis said to be aui-switching time ifuiis not constant in any neighborhood oft. Remark12.Along aui-singular arci0 which implies_i0 and30. InR2this implies thatfi(q(t))0 orq(t)2Ahence thatq(t)2 A[i. InR3, for example for au1-singular, along which21, this implies that

0 =u1(q(t))f42(q(t)) +f52(q(t)):

Hence on a domain wherejf52j>jf42j, nou1-singular can run.

20CHAPTER 1. SUB-FINSLERIAN STRUCTURES

Proposition 13.InR2, under the generic assumption thatA,1and2 are submanifolds traversal by pair (see section 1.4) then 1. The supp ortof a ui-singular trajectory is always contained in the setquotesdbs_dbs28.pdfusesText_34
[PDF] forme indéterminée infini moins infini

[PDF] longueur masse durée 6ème exercices

[PDF] comment calculer moyenne fst tanger

[PDF] fst marrakech seuil 2017

[PDF] calculer moyenne fst mip

[PDF] seuil fst marrakech 2016

[PDF] calculer seuil fst

[PDF] exercices sur les pentes

[PDF] calcul de pente pdf

[PDF] calcul de pentes exercices pdf

[PDF] calcul de pente de toit

[PDF] comment calculer le pourcentage d'une pente

[PDF] calcul pente droite

[PDF] méthode de monte carlo exercice corrigé

[PDF] p=f/s bar