[PDF] RDM – Ossatures Manuel dexercices





Previous PDF Next PDF



rdm-2010-corrige.pdf

exercice : Déterminer l'allongement ∆L d'un entrait d'une charpente sachant But :dimensionner correctement la poutre connaissant sa hauteur. Bois ...



Untitled

2 mai 2019 EXERCICE DE RDM N° 4. Contraintes. ECOLE TECHNIQUE. DE LA CONSTRUCTION ... normales aux six coins d'une poutre à té soumise à des efforts selon le.



Poutres hyperstatiques-Simples.pdf

RDM. Déformation. 5. Poutres hyperstatiques (Poutre bi-encastrée avec chargement uniforme). Les seules équations de la statique ne suffisant pas pour résoudre 



RDM_BI.pdf

Le présent polycopié est un support de cours de résistance des matériaux (RDM) avec exercices corrigés Exercice 6 : Méthode de la poutre conjuguée. Calculer ...



RDM_BI.pdf

Le présent polycopié est un support de cours de résistance des matériaux (RDM) avec exercices corrigés Exercice 6 : Méthode de la poutre conjuguée. Calculer ...



Travaux dirigés de résistance des matériaux

Corrigé TD5. EXERCICE 4. 1. ➢ Action en A du satellite (2) sur le planitaire corrigé TD8 :Flambement des poutres comprimées. Travaux dirigés de ...



MECANIQUE DU SOLIDE NIVEAU 1 LA STATIQUE CORRIGE

Exercice d'application: méthode Soit une poutre posé sur deux appuis A et B avec une force F correspondant à une charge verticale. (voir fig 34).



RDM –´Eléments finis Manuel dexercices

La poutre est soumise `a un gradient thermique : les températures des surfaces BC et AD sont res- pectivement égales `a TBC et TAD. La température de référence 



RDM 1ère année ENTPE Résistance des matériaux – partie 1

Corrigés RDM ENTPE partie 1 http://www.csb.bet. 14/93. La loi de Hooke donne Poids de la neige sur la poutre qneigepoutre : La neige sur la poutre peut ...



CORRIGE

1 - But de la R.D.M. . 6 - Application à une poutre rectangulaire . ... exercice : Déterminer l'allongement ?L d'un entrait d'une charpente sachant que.



Travaux dirigés de résistance des matériaux

Corrigé TD 1. 36. Corrigé TD 2. 40. Corrigé TD 3. EXERCICE 1. Soit la poutre encastrée en A et supportant un effort inclinéF ... EXERCICE 3 .



RDM 1ère année ENTPE Résistance des matériaux – partie 1

Corrections des exercices. Boris TEDOLDI Corrigés RDM ENTPE partie 1 ... Le poids propre de la poutre est alors égal à : 53.10?2 × 1200 ? 64 .



Calcul des structures hyperstatiques Cours et exercices corrigés

La RDM permet de calculer et de tracer les diagrammes des sollicitations d'une chapitre la méthode des forces est décrite pour le calcul des poutres



MECANIQUE DU SOLIDE NIVEAU 1 LA STATIQUE CORRIGE

Exercice d'application : Dispositif de levage . Exercices. Une poutre en bois est sollicitée par trois forces coplanes F1 RA et RB.



RDM – Ossatures Manuel dexercices

Laroze Calcul de structures par éléments finis



Elaboré par : Dr Imene BENAISSA République Algérienne

Le présent polycopié est un support de cours de résistance des matériaux (RDM) avec exercices corrigés destiné aux étudiants de 2ème année (S4) licence de 



RDM 6 Corrigé du TD n°2 : déformation dun arbre guidé en rotation

Dans notre exercice toutes les poutres ne forment qu'un seul élément rigide. • Sélectionner le bouton Relaxations : liaisons entre poutres : • Le menu suivant 



Résistance des matériaux : élasticité méthodes énergétiques

20 juin 2011 4.2.5 Exercice : contraintes et énergie de déformation . ... Avec RDM-Ossatures l'arc étant discrétisé en éléments de poutre droite de ...



Poutres hyperstatiques-Simples.pdf

RDM. Déformation. 2. Poutres hyperstatiques (Poutre bi-encastrée avec force ponctuelle):. Les seules équations de la statique ne suffisant pas pour résoudre 

RDM { Ossatures

Manuel d'exercices

Yves Debard

Institut Universitaire de Technologie du Mans

26 juin 2006 { 29 mars 2011

Table des matiµeres

1 Exemples

1

Exemple 1 : Portique plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Exemple 3 : Anneau plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Exemple 4 : Plancher

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Exemple 5 : Ossature spatiale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Exemple 6 : Modes propres d'un anneau plan

. . . . . . . . . . . . . . . . . . . . . . . . . . 12

Exemple 7 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Analyse statique

16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E2 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E3 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E4 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E5 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E6 : Poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E7 : Poutre courbe

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E8 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 E9 : Poutre µa section droite variable soumise µa son poids propre . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 . . . . . . . . . . . . . 29 . . . . . . . . . . . . . . 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

S2 : Torsion d'une poutre rectangulaire

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 . . . . . . . . . . . . . . . 45 S11 : Contraintes dans une section droite : °exion-torsion . . . . . . . . . . . . . . . . . . . 46

S12 : Cisaillement du µa l'e®ort tranchant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 S13 : Contrainte normale dans une poutre µa section droite variable . . . . . . . . . . . . . . 49 . . . . . . . . . . . . . . . 50

S15 : Section droite µa parois minces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 S16 : Contraintes tangentielles dans un caisson multicellulaire . . . . . . . . . . . . . . . . . 53 3 . . . . . . . . . . . . 55

S18 : Flexion - torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 S19 : Contraintes normales dans une poutre µa section droite variable . . . . . . . . . . . . . 59 60

F1 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

F2 : Poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

F3 : Poutre droite µa section variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

F4 : Poutre console { °exion-torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 F7 : Flambement d'un m^at vertical sous son poids propre . . . . . . . . . . . . . . . . . . . 71

F8 : Flambement d'une poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

F9 : Flambement d'un cadre

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Modes propres

75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D2 : Poutre droite µa section variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 . . . . . . . . . . . . . . . . . 77

D4 : Portique plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D5 : Ossature spatiale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

D6 : Ossature plancher

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 D7 : Vibrations transversales d'une poutre droite libre . . . . . . . . . . . . . . . . . . . . . 81 D8 : Premier mode propre d'une poutre console avec masses . . . . . . . . . . . . . . . . . . 82 83

Chapitre 1

Exemples

Exemple 1 : Portique plan

SoientAl'aire des sections droites etIZleur moment quadratique par rapport µa l'axeZ. L'ossature Le n¾ud 2 porte une force de composantes(P;0;0).

On donne :

L= 2m

A= 16cm2,IZ= 135cm4

E= 200000MPa

P= 10000N

2RDM { Ossatures

Fichier

Ossature plane

Poutres

Sections droites

Section droite quelconque

A= 16cm2,IZ= 135cm4

Liaisons

Cas de charges

Le n¾ud 2 porte une charge de composantes (10000, 0, 0) N.

Module de Young = 200000 MPa

Calculer

Paramµetres

Modµele de Bernoulli

Calculer

Analyse statique

u

2= 2:2144mm; v2=¡0:0017mm; µ2z=¡0:0388º

u

3= 0:0245mm; v3=¡0:0033mm; µ3z= 0:1510º

4z=¡0:0754º

Actions de liaison:

R

1x=¡6077:4N; R1y= 533:4N; M1z= 3221:6N.m

R

4x=¡3922:6N; R4y=¡533:4N

Manuel d'exercices3

Problµeme:

Les poutres1¡2et1¡4sont en acier :

module de Young = 200000 MPa coe±cient de dilatation = 11 10

¡6K¡1

La poutre1¡3est en laiton :

module de Young = 100000 MPa coe±cient de dilatation = 18 10

¡6K¡1

Le n¾ud 1 porte une charge

~Pde composantes(0;¡10000;0)N.

4RDM { Ossatures

Poutres

Relaxations

Sections droites

Modi¯er la couleur courante

module de Young = 100000 MPa , coe±cient de dilatation = 18E¡6K¡1 module de Young = 200000 MPa , coe±cient de dilatation = 11E¡6K¡1

Liaisons

Cas de charges

Le n¾ud 1 porte une force de composantes(0;¡10000;0)N

Calculer

Analyse statique

u

1= 0; v1=¡0:96mm

Allongement des poutres:

1¡2= ¢1¡4= 0:768mm;¢1¡3= 0:960mm

E®orts normaux:

N

1¡2=N1¡4= 4370N; N1¡3= 3008N

Manuel d'exercices5

Exemple 3 : Anneau plan

On donne :

E= 200000MPa ,º= 0:3

c= 10mm ,L=R= 50mm p=¡10N/mm quart de l'anneau.

Fichier

Bibliothµeque

Ossature plane

6RDM { Ossatures

E= 200000MPa ,º= 0:3

Sections droites

Cas de charges

Calculer

Paramµetres

Modµele de Timoshenko

Calculer

Analyse statique

v

1=(6¼2+ 17¼¡6)pR4

24(2 +¼)EIz+¼ pR2

4EA+(2 +¼)pR2

4GAky =¡0:324026¡0:000982¡0:005013 =¡0:330021mm u

3=(¼¡14)pR4

6(2 +¼)EIz+pR2

2EA¡pR2

2GAky = 0:131992¡0:000625 + 0:001950 = 0:133317mm

Actions de liaisons:

F

1x= 0; M1z=(14 + 3¼)pR2

6(2 +¼)=¡18983N.mm

F

3y=¡pR= 500N; M3z=(2 + 3¼)pR2

3(2 +¼)=¡18567N.mm

Mf z2=¡4pR2

3(2 +¼)= 6483N.mm

Contraintes normales:

a b¾ =¨(14 + 3¼)pR2 (2 +¼)c3=§113:90MPa c d¾ =pR c

2¨2(2 + 3¼)pR2

(2 +¼)c3=½106:10

¡116:10MPa

Manuel d'exercices7

v

1=¡0:329765mm; u3= 0:133290mm

Actions de liaison:

F

1x= 0N; M1z=¡18977N.mm; F3y= 500N; M3z=¡18523N.mm

Contraintes normales:

a= 113:86MPa; ¾b=¡113:86MPa; ¾c= 106:14MPa; ¾d=¡116:14MPa

Remarque:

Avec le module RDM {

obtient : v

1=¡0:328065mmu3= 0:133370mm

a= 113:96MPa; ¾b=¡113:96MPa; ¾c= 99:66MPa; ¾d=¡124:20MPa 3 ] donne : c= 99:10MPa; ¾d=¡124:00MPa

8RDM { Ossatures

Exemple 4 : Plancher

1990, pages 342-345.

Problµeme:

Le n¾ud 2 porte une force de composantes(0;0;50)kN et un couple de comosantes(0;100;0)kN.m. La poutre1¡2porte en son milieu une force ponctuelle de composantes(0;0;¡150)kN. (0;0;¡75)kN/m.

On donne :

L= 2m module de Young = 200000 MPa , coe±cient de Poisson = 0.25 aire = 10

2cm2, constante de torsion de Saint VenantJ= 2105cm4,IZ= 105cm4

P= 5000daN

Manuel d'exercices9

Poutres

Sections droites

Section quelconque

Aire = 100 cm

2

Constante de torsion de Saint Venant :J= 2E5 cm4

Moment quadratique :IZ= 1E5 cm4

Liaisons

Cas de charges

Le n¾ud 2 porte une forceFz= 50kN

Le n¾ud 2 porte un coupleMy= 100kN.m

Module de Young = 200000 MPa , coe±cient de Poisson = 0.25

Calculer

Analyse statique

w

2=¡1:2182mm; µ2x=¡0:35599 10¡3rad; µ2y=¡0:14976 10¡3rad

w

4=¡2:0993mm; µ4x= 0:28856 10¡3rad; µ4y= 0:18376 10¡3rad

Actions de liaison:

F

1z= 93:528kN; M1x= 9:493kN.m; M1y=¡163:092kN.m

F

3z= 34:452kN; M3x= 14:240kN.m; M3y= 76:393kN.m

F

5z= 214:940kN; M5x=¡11:543kN.m; M5y=¡239:068kN.m

F

6z= 57:080kN; M6x=¡128:588kN.m; M6y=¡7:351kN.m

10RDM { Ossatures

Exemple 5 : Ossature spatiale

Problµeme:

des rectangles pleins. n¾ud x(m) y(m) z(m) 1 0 0 0 2 0 0 4 3 0 8 4 4 0 11 4 5 3 8 4 6 3 8 0

Le n¾ud 4 porte une force

~Fde composantes(0;0;¡1000)daN .

Manuel d'exercices11

Poutres

Module de Young = 100000 MPa , coe±cient de Poisson = 0.2987

Sections droites

Changer les poutres3¡5et5¡6de groupe

Rectangle plein :600£300mm

Rectangle plein :500£300mm

Rectangle plein :800£300mm

Repµere local

Modi¯er le repµere local de la poutre1¡2(angle = 90º)

Liaisons

Cas de charges

Le n¾ud 4 porte une charge de composantes(0;0;¡1000)daN

Calculer

Paramµetres du calcul

Modµele de Timoshenko

Calculer

Analyse statique

M to Mf Y o Mf Zo M te Mf Y e Mf Ze

1¡2

-6 271.2
-389.6 -6 322
-104.7

RDM { Ossatures

-5.6 271.5
-389.7 -5.64 322.8
-101.2

2¡3

322.2
-6 -104.7 -322.2 96.6
-2513

RDM { Ossatures

-322.8 -5.6 -101.2 -323.1 97.04
-2511

3¡4

0 0 -3000 0 0 0

RDM { Ossatures

0 0 -3000 0 0 0

3¡5

487.2
322.2
-96.6 487.2
-3581 117.1

RDM { Ossatures

488.6
322.8
-97.04 488.6
-3581 119.4

5¡6

117.1
-3581 -487.2 117.1
-3632 -202

RDM { Ossatures

119.4
-3581 -488.6 119.5
-3632 -200.1

12RDM { Ossatures

Exemple 6 : Modes propres d'un anneau plan

Problµeme:

L'anneau et la patte ont des sections droites rectangulaires pleines. On recherche lessix premiers modes propresde cet anneau.

On donne :

R= 0:1m ,L= 0:0275m

E= 72000MPa ,½= 2700kg/m3

Section droite de l'anneau :Ha= 5mm ,Ba= 10mm

Section droite de la patte :Hp= 3mm ,Bp= 10mm

Manuel d'exercices13

Ajouter une poutre verticale

Origine : n¾ud 1 , longueur = 0.0275 m

Module de Young = 72000 MPa

Masse volumique = 2700 kg/m

3

Sections droites

Changer la patte de groupe de section

Rectangle plein : 5 x 10 mm

Rectangle plein : 3 x 10 mm

Liaisons

Poutres

Calculer

Modes propres

6 premiers modes propres

Mode

RDM { Ossatures

1 28.8
28.81
2 189.3

189.30

3 268.8

268.60

4 641.0

640.52

5 682.0

681.65

6

1063.0

1062.70

quotesdbs_dbs7.pdfusesText_13
[PDF] exercice recherche internet

[PDF] exercice recherche internet debutant

[PDF] exercice réciproque de pythagore

[PDF] exercice réciproque de thalès brevet

[PDF] exercice rédaction courrier professionnel

[PDF] exercice redressement commandé corrigé

[PDF] exercice rééducation écriture adulte

[PDF] exercice reflexion refraction bac pro

[PDF] exercice régime transitoire corrigé

[PDF] exercice relativité restreinte bac

[PDF] exercice rémunération du personnel

[PDF] exercice reproduction humaine 4ème

[PDF] exercice ressources humaines gratuit

[PDF] exercice ricardo corrigé

[PDF] exercice rl corrigé