[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices





Previous PDF Next PDF



Exercices supplémentaires : Suites

5) Etudier les variations de la suite . 6) Montrer que pour tout ?? 0< ? 1. Exercice 13. On considère la suite définie par = ? 



MATH Tle D OK 2

Les corrigés sont pour confirmer leurs justes réponses ou donner On dit que la suite ( ) est majorée s'il existe un réel tel que pour tout ? ? .



Cours danalyse 1 Licence 1er semestre

3 Suites réelles et complexes 7 Corrigé des exercices ... et les quatre opérations élémentaires +?



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

Ce tome débute par l'étude des nombres réels puis des suites. site Exo7 toutes les vidéos correspondant à ce cours



Première générale - Suites numériques - Exercices - Devoirs

Suites numériques – Exercices - Devoirs. Exercice 1 corrigé disponible. Exercice 2 corrigé disponible. Exercice 3 corrigé disponible.



Première générale - Suites arithmétiques et géométriques - Exercices

Suites arithmétiques et géométriques – Exercices - Devoirs. Exercice 1 corrigé Exercice 15 corrigé disponible. Calculer les sommes suivantes : 1. S=.



suites arithmetiques et geometriques exercices corriges

6. 20 u = .Calculez 0 u. Exercice n°4. Albert place un capital initial C0 a) Si u1 est le loyer initial de la 1ère année exprimer le loyer un de la ...



ficall.pdf

Tous les exercices 54 121.02 Suite définie par une relation de récurrence ... 170 222.04 Suite et série de matrices. 735. 171 222.99 Autre. 736. 6 ...



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

3) Vérifier le calcul en effectuant les calculs des matrices MM-1 et M-1M. Exercice 17 – Soit M la matrice de M3(R) définie par : M =.



Séries numériques

6. Il s'agit d'une série de Riemann divergente avec. Allez à : Exercice 1 Il s'agit d'une suite géométrique de raison dans ] [ la série converge.

Exercices Corriges

Matrices

Exercice 1{Considerons les matrices a coecients reels :

A= 2 1

2 1! ; B= 1 2 24!
C=0 B @1 1 2 1 0 1 11 01 C

A; D=0

B @11 1 1 0 1

0 1 01

C

A; E= 11 1

1 0 1!

Si elles ont un sens, calculer les matricesAB,BA,CD,DC,AE,CE.

Exercice 2{(extrait partiel novembre 2011)

On considere les matrices a coecients reels :

A= 1 1

1 1!

B= 431

2 1 1!

C= 1 2

12! Calculer, s'ils ont un sens, les produitsAB;BA;AC;CA;B2. Exercice 3{On considere les matrices a coecients reels :

A= 1 3

2 4!

B= 431

2 1 1!

C= 43 2 1!

1) Calculer s'ils ont un sens les produitsAB;BA;AC;CA;BC;CB;B2.

2) En deduire, sans plus de calcul, queAetCsont inversibles et preciser leurs inverses.

Exercice 4{SoitAla matrice deM2(R) etBla matrice deM2;3(R) denies par :

A= 4 3

1 1! ; B= 1 0 2 1 11! Si elles ont un sens, calculer les matricesAB,BA,A2,B2etA+ 2Id2.

Exercice 5{SoitA;B;Cles matrices :

A= 22 0

4 22!

2M2;3(R); B=0

B @1 1 1 2 131
C

A2M3;2(R); C= 11

1 2!

2M2;2(R)

Determiner les produits denis 2 a 2 de ces trois matrices. Exercice 6{Ti;j() etant la matrice elementaire qui correspond a ajouter a la ligneile produit parde la ligne j, preciser la matriceT2;1(12 ) deM2;2(R), puis la matriceT1;2(2)T2;1(12 1 Exercice 7{1) Preciser les matrices elementaires deM3;3(R) : D

2(2); T3;2(3); T2;1(2):

2) Calculer la matriceA=T3;2(3)D2(2)T2;1(2).

3) DonnerA1sous forme de produit de matrices elementaires. Puis, calculerA1.

Exercice 8{Appliquer avec precision aux matricesMetNsuivantes l'algorithme du cours qui determine si une matrice est inversible et donne dans ce cas son inverse : M= 23 11!

2M2;2(R)et N= 23

46!

2M2;2(R):

Exercice 9{(extrait partiel novembre 2011)

1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et preciser

son inverse :

A= 1 2

3 4!

2) Puis, donner une expression deA1et deAcomme produit de matrices elementaires.

Exercice 10{1) Appliquer avec precision l'algorithme du cours pour inverser la matrice : M= 11 23!

2M2;2(R):

2 ) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

Exercice 11{) Appliquer avec precision l'algorithme du cours pour inverser la matrice :

M= 2 1

3 2!

2M2;2(R):

Preciser une expression deM1, puis deMcomme produit de matrices elementaires. Exercice 12{SoitAetBdeux matrices carrees de m^eme ordre, on suppose que la matrice ABest inversible d'inverse la matriceC. Montrer alors queBest inversible et preciserA1.

Exercice 13{(extrait partiel novembre 2011)

SoitXetYdeux matrices carrees non nulles de m^eme taille a coecients reels, montrer que siXY= 0, les matricesXetYne sont pas inversibles.

Exercice 14{SoitM=0

B @2 4 1 2 5 1

1 2 11

C A.

1) Montrer en appliquant les algorithmes du cours queMest inversible. Preciser la matrice

M

1ainsi que la decomposition deM1comme produit de matrices elementaires.

2

2) En deduire une decomposition deMcomme produit de matrices elementaires.

3) Montrer que nous avons aussiM=T2;3(1)T1;3(1)T3;1(1)T2;1(1)T1;2(2).

4) En deduire une deuxieme expression deM1comme produit de matrices elementaires.

5) Calculer det(M) et retrouver la valeur deM1en utilisant la formule d'inversion donnee

dans le cours.

Exercice 15{(extrait partiel novembre 2009)

1) Appliquer avec precision l'algorithme du cours pour determiner l'inverseM1de la matrice :

M=0 B @1 2 3 0 1 2

0 4 61

C

A2M3;3(R):

Quelle est la valeur deM1?

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Deduire de la question 1 une matriceXdeM3;3(R)telle que :

2XM=0 B @1 0 0 0 1 0 02 11 C A: Exercice 16{1) Appliquer avec precision l'algorithme du cours pour determiner l'inverse M

1de la matrice :

M=0 B @1 2 3 0 1 1

0 2 31

C

A2M3;3(R):

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Verier le calcul en eectuant les calculs des matricesMM1etM1M.

Exercice 17{SoitMla matrice deM3(R) denie par :

M=0 B @1 01 2 3 4

0 1 11

C A:

1) Calculer le determinant deM, sa comatrice et l'inverse deM.

2) Determiner l'inverse deMsous forme de produit de matrices elementaires. EcrireMcomme

produit de matrices elementaires.

3) Resoudre a l'aide de l'inverse deMle systeme suivant oumest un reel xe :

(m)2 6 4x 1x3=m

2x1+ 3x2+ 4x3= 1

+x2+x3= 2m: 3

Correction de l'exercice 1 :

Le lecteur veriera que :

AB= 0 0

0 0! ; BA= 6 3 126!
CD=0 B @0 1 2 1 0 1 21 01
C

A; DC=0

B @123 2 0 2

1 0 11

C

A; AE= 12 3

12 3! Le produitCEn'a pas de sens car la taille des colonnes (a savoir 2) deEest dierent de la taille des lignes (a savoir 3) deC.

Correction de l'exercice 2 :

On trouve :

AB= 22 0

22 0!

AC= 0 0

2 0!

CA= 3 3

33!

Les deux autres produitsB2etBAn'ont pas de sens.

Correction de l'exercice 3 :

1)

AB= 2 0 2

02 2! BAn'a pas de sens car la taille des lignes deBn'est pas egale a celle des colonnes deA.

AC= 2 0

02! =2Id2:

CA= 2 0

02! =2Id2:

CB= 22157

10 7 3!

BCn'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deC. B

2n'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deB.

2) Nous avons :AC=CA=2Id2, nous en deduisons :

A(12

C) = (12

C)A= Id2:

Il en resulte que la matriceAest inversible, d'inverse : A 1=12

C= 232

112
4

De m^eme :

(12

A)C=C(12

A) = Id2:

Il en resulte que la matriceCest inversible, d'inverse : C 1=12 A= 12 32
12!

Correction de l'exercice 4 :

AB= 7 311

2 13!

La matriceBAn'a pas de sens.

A

2=AA= 139

32!

La matriceB2n'a pas de sens.

A+ 2Id2= 4 3

1 1! + 2 1 0 0 1! = 2 3 1 3!

Correction de l'exercice 5 :

AB= 02

4 14! ; BA=0 B @6 02 10 24

108 61

C

A; CA= 24 2

10 24!

BC=0 B @2 1 3 3 271
C

A; C2= 03

3 3!

Les matricesAC,CB,A2etB2ne sont pas denis.

Correction de l'exercice 6 :

T

2;1(12

) =T2;1(12 )I2=T2;1(12 ) 1 0 0 1! = 1 0 12 1! De m^eme, en utilisant les proprietes des actions a gauche par les matrices elementaires, on obtient : T

1;2(2)T2;1(12

) =T1;2(2) 1 0 12 1! = 02 12 1!

Correction de l'exercice 7 :

1.1) 5 D

2(2) =D2(2)I3=D2(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 02 0

0 0 11

C A: T

3;2(3) =T3;2(3)I3=T3;2(3)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 0 1 0

0 3 11

C A: T

2;1(2) =T2;1(2)I3=T2;1(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 2 1 0

0 0 11

C A: 1.2)

A=T3;2(3)D2(2)T2;1(2) =T3;2(3)D2(2)0

B @1 0 0 2 1 0

0 0 11

C A:

A=T3;2(3)0

B @1 0 0 42 0

0 0 11

C A: A=0 B @1 0 0 42 0

126 11

quotesdbs_dbs12.pdfusesText_18
[PDF] exercices corrigés suites numériques 1ère s pdf

[PDF] exercices corrigés suites terminale es pdf

[PDF] exercices corrigés sur l'entropie et le second principe

[PDF] exercices corrigés sur l'entropie pdf

[PDF] exercices corrigés sur la constitution des sociétés pdf

[PDF] exercices corrigés sur la gestion des approvisionnements et des stocks

[PDF] exercices corrigés sur la loi de student pdf

[PDF] exercices corrigés sur la nomenclature des complexes de coordination

[PDF] exercices corrigés sur la normalité et la molarité(pdf)

[PDF] exercices corrigés sur la ponctuation pdf

[PDF] exercices corrigés sur la reproduction chez l'homme

[PDF] exercices corrigés sur la reproduction chez les mammifères

[PDF] exercices corrigés sur la structure de l atome pdf

[PDF] exercices corrigés sur la structure de la matière

[PDF] exercices corrigés sur le circuit rl