[PDF] Corrigé (des exercices 1-8) du TD no 9 — Formules de Taylor





Previous PDF Next PDF



Feuille dexercices 10 Développements limités-Calculs de limites

Fondamentaux des mathématiques 2. Feuille d'exercices 10. Développements limités-Calculs de limites. Exercice 1. Etablir pour chacune des fonctions proposées 



Développements limités

Indication pour l'exercice 2 Α. Pour la première question vous pouvez appliquer la formule de Taylor ou bien poser h = x−1 et considérer un dl au voisinage de 



Développements limités équivalents et calculs de limites

Exercice 24. 1. Déterminer le développement limité à l'ordre 3 au voisinage de 0



Développements limités - Grenoble

30 janv. 2014 2.2 Exercices . ... earcsin(x) − esinh(x) eargsinh(x) − esin(x). = 1 . 34. Page 36. Maths en Ligne. Développements limités. UJF Grenoble. 2.5 ...



Exercices - Développements limités : corrigé Calculs de DLs

ln(1 + x) sin x. = 1 − x. 2. + x2. 2. − x3. 3. + o(x3). Exercice 4 - DLs pas en 0 ! - L1/Math Sup - ⋆. 1. On pose x =2 



EXERCICES SUR LES DEVELOPPEMENTS LIMITES

(On pourra prendre le nombre 2 comme valeur approchée de √5). 7. Page 8. Corrigé. 1. a) On part des d.l. de arctan x ex et sinx à l'ordre 3 en zéro. On 



Développements limités

Exercice 1 : 33. Page 35. Maths en Ligne. Développements limités. UJF Grenoble. 1. Écrire Maths en Ligne. Développements limités. UJF Grenoble. 2.5 Corrigé du ...



Développements limités

Mini-exercices. 1. Calculer le DL en 0 de x → ch x par la formule de Taylor-Young. Retrouver ce DL en utilisant que ch x 



Exercices de mathématiques - Exo7

0 ϕ(t) dt. Correction ▽. [005891]. Exercice 6 ***. Donner un développement limité à l'ordre 3 en 0 de la fonction implicitement définie sur un voisinage de 0 



Feuille dexercices 10 Développements limités-Calculs de limites

Fondamentaux des mathématiques 2 Correction exercice 1. ... à l'ordre 5 donne le polynôme de Taylor du développement limité de tan( ) à l'ordre 5 en 0.



Développements limités

Développements limités. Corrections d'Arnaud Bodin. 1 Calculs. Exercice 1. Donner le développement limité en 0 des fonctions : 1. cosx·expx à l'ordre 3.



Développements limités équivalents et calculs de limites

Exercice 24. 1. Déterminer le développement limité à l'ordre 3 au voisinage de 0



Walanta

Pour les calculs de limites savoir utiliser



Exercices - Développements limités : corrigé Calculs de DLs

La courbe traverse donc sa tangente en (0ln 2). Exercice 12 - Branches infinies - L1/Math Sup - ??. On commence par l'étude au voisinage de 



Développements limités

30 janv. 2014 Maths en Ligne. Développements limités. UJF Grenoble. 1 Cours. 1.1 Polynômes de Taylor. Commençons par rappeler deux résultats fondamentaux ...



Corrigé de la feuille dexercices numéro 4 Développements limités

Donc ex. ?. 1 + x =1+. 3. 2 x +. 7. 8 x2 +. 17. 48 x3 +. 11. 128 x4 + o(x4). Exercice 2.—[Quotient et composition]. 1. Indice : écrire 1/cos comme le DL de 1.



Développements limités

Maths en Ligne. Développements limités. Bernard Ycart. Les développements limités sont l'outil principal d'approximation locale des fonc-.



Cours danalyse 1 Licence 1er semestre

5.3 Calcul de développements limités . Merci `a Michele Bolognesi pour la rédaction de quelques corrigés d'exercices.



Exercices de Mathématiques 1 et 2 avec corrigés Licence première

1 oct. 2018 Limitescontinuité et dérivabilité. 19. 6 Développement limité. 31. 7 Les éspaces véctoriels. 39. 8 Applications Linéaires.

Licence MIASHS - 2014/2015 Analyse 1 (MI001AX)

Corrigé (des exercices 1-8) du TD n

o9 - Formules de TaylorCorrigé de l"exercice 11. (a) Formule de Taylor-Young : supposons quefsoit de classeCnsur

I. Alors, pour touth?Rtel quex0+happartienne àIon peut écrire f(x0+h) =f(x0) +hf?(x0) +h22! f(2)(x0) +···+hnn!f(n)(x0) +hnε(h) n? k=0h kk!f(k)(x0) +hnε(h) oùε(h)est une fonction qui tend vers0quandhtend vers0. (b) Formule de Taylor-Lagrange : supposons quefsoit de classeCn+1surI. Alors, pour tout h?Rtel quex0+happartienne àI, il existeθ?]0,1[tel que l"on ait f(x0+h) =n? k=0h kk!f(k)(x0) +hn+1(n+ 1)!f(n+1)(x0+θh) (notons ici queθdépend deh).

2. La partie principale de la série de Taylor defenx0à l"ordrenest le polynôme

n k=0h kk!f(k)(x0) (par convention,0! = 1! = 1).

3. Un développement limité defenx0à l"ordrenest la donnée d"un polynômePde degréntel que

l"on ait, pour touthtel quex0+happartienne àI, f(x0+h) =P(h) +hnε(h) oùε(h)est une fonction qui tend vers0quandhtend vers0.

Corrigé de l"exercice 21. La fonctionf:x?→exest sa propre dérivée, et vaut1en0. Ainsi les

coefficientsf(k)(0)sont tous égaux à1; la formule de Taylor-Young en0à l"ordre4s"écrit donc :

e x= 1 +x+x22! +x33! +x44! +x4ε(x)

2. Commençons par calculer les 4 premières dérivées de la fonctionf:x?→lnx.

f(x) = lnx, f?(x) =1x , f??(x) =-x-2, f(3)(x) = 2x-3, f(4)(x) =-6x-4. Les valeurs respectives de ces fonctions en1sont0,1,-1,2et-6. La formule de Taylor-Young en

1à l"ordre4s"écrit donc :

ln(1 +h) =h-h22 +h33 -h44 +h4ε(x)

Il vient alors

ln(1 +h)-hh 2=12 +h3 -h24 +h2ε(x), d"où lim h→0ln(1 +h)-hh 2=12 1

3. La formule de Taylor-Young en2à l"ordre4pour la fonction polynomialeP(x) = 1 +x+x2+x3

s"écrit :

P(2 +h) =P(2) +hP?(2) +h22

P??(2) +h33!

P(3)(2).

En effet, commePest de degré3toutes ses dérivées à partir deP(4)sont nulles! D"autre part,

en regardant bien la formule ci-dessus, on réalise qu"il n"y a pas besoin de calculer les coefficients

P ?(2),P??(2)etP(3)(2). En effet, il suffit de calculerP(2 +h)pour expliciter la formule :

P(2 +h) = 1 + (2 +h) + (2 +h)2+ (2 +h)3

= 1 + 2 +h+ (h2+ 4h+ 4) + (h3+ 6h2+ 12h+ 8) = 15 + 17h+ 7h2+h3 Ce calcul permet au passage d"affirmer que :P(2) = 15,P?(2) = 17,P??(2) = 14etP(3)(2) = 6.

4. Commençons par calculer les 4 premières dérivées de la fonctionf:x?→⎷1-x2.

f(x) =?1-x2 f ?(x) =-2x2 ⎷1-x2=-x(1-x2)-1/2 f ??(x) =-(1-x2)-1/2-x((1-x2)-1/2)?=-(1-x2)-1/2-x(-12 )(-2x)(1-x2)-3/2 =-(1-x2)-3/2((1-x2) +x2) =-(1-x2)-3/2 f (3)(x) =32 (-2x)(1-x2)-5/2=-3x(1-x2)-5/2 f (4)(x) =-3(1-x2)-5/2-3x((1-x2)-5/2)? d"où f(0) = 1, f?(0) = 0, f??(0) =-1, f(3)(0) = 0, f(4)(0) =-3. La formule de Taylor-Young en0à l"ordre4s"écrit donc : f(x) = 1-x22 -x48 +x4ε(x).

Remarque : ce calcul des dérivées successives de la fonctionfest extrêmement fastidieux. Nous ver-

rons plus loin qu"en composant des polynômes de Taylor de fonctions usuelles (que vous êtes censés

apprendre par coeur) on obtient la même formule de façon beaucoup plus efficace... Cela fournit du

même coup un procédé pour calculerf?(0),...,f(4)(0)sans avoir à calculerf?(x),...,f(4)(x).

Corrigé de l"exercice 3En appliquant Taylor-Lagrange pourx?→exau voisinage de0on trouve que, pour chaquex?R, il existeθ?]0,1[tel que e x= 1 +x+x22! +x33! +x44! +x55! +x66! eθx.

On applique cette formule àx=12

, ce qui donne : ⎷e= 1 +12

D"autre part, nous avons

e

θ/2<⎷e <2

d"où

16!×64eθ/2<16!×32<10-4.

Ceci montre que la somme des 6 premiers termes dans la formule (1) ci-dessus constitue une valeur approchée de⎷eà10-4près. 2 Corrigé de l"exercice 41. La formule de Taylor-Lagrange à l"ordre5en0pour la fonction sinus s"écrit sinx=x-x33! +x55! -x66! sinθx pour un certainθ?]0,1[dépendant dex.

2. En vertu de ce qui précède, nous avons

sinx-xx

2=-x3!

+x35! -x46! sinθx d"où lim x→0sinx-xx 2= 0.

3. Soitx≥0. Il est facile de voir que

x <6?x6 <1?x6! <15! ?x66!

Il en résulte que, quandx?[0,6[, alors

????x66! d"où x55! -x66! sinθx≥0. D"après la formule de la question 1, nous avons donc, pourx?[0,6[, sinx≥x-x36 D"autre part, on vérifie facilement que, pourx≥6, x-x36 On a donc montré, pour toutx≥0, l"inégalité x-x36

L"autre inégalité se montre par un procédé analogue, en faisant cette fois appel à la formule de

Taylor-Lagrange à l"ordre7.

Corrigé de l"exercice 5Le principe est le même que pour la question 3 de l"exercice précédent.

Corrigé de l"exercice 61. La formule de Taylor-Young pour sinus à l"ordre6en0nous dit que sinh=h-h33! +h55! +h6ε(h) d"où, en remplaçanthparx2, sin(x2) =x2-x63! +x105! +x12ε(x2) =x2-x63! +x9?x5! +x3ε(x2)?

Si on appelle à nouveau, par abus de notation,ε(x)la fonction entre parenthèses, nous obtenons

sin(x2) =x2-x63! +x9ε(x) 3 ce qui constitue en fait un développement limité desin(x2)à l"ordre9en0. D"autre part cosx= 1-x22 +x44! -x66! +x6ε(x). Or on peut additionner les développements limités. D"où : f(x) = sin(x2) + cosx = 1 +x2? 1-12 +x44! -x6?13! +16! +x6ε(x) = 1 + x22 +x424 -121720 x6+x6ε(x). ce qu"on cherchait.

2. Par définition de la fonction puissance, il vient

g(x) =e1x ln(1+x). Pour trouver le DL deg(x)à l"ordre2en0, on doit d"abord trouver le DL à l"ordre2en0de 1x ln(1 +x). Or le DL à l"ordre3en0deln(1 +x)s"écrit : ln(1 +x) =x-x22 +x33 +x3ε(x). en divisant le tout parx, on trouve 1x ln(1 +x) = 1-x2 +x23 +x2ε(x). ce qui constitue un DL d"ordre2en0de1x ln(1+x). Notons que cette opération a fonctionné parce que le terme constant du DL deln(1 +x)est nul. On doit maintenant composer ce DL avec le DL d"ordre2en1de la fonction exponentielle : en effet, le calcul que nous venons de faire prouve que, quandxest au voisinage de0, alors1x ln(1 +x)est au voisinage de1. Il vient : e

1+h=e×eh=e×?

1 +h+h22

+h2ε(h)

D"où, par composition des DL d"ordre2:

g(x) =e×? 1 +? -x2 +x23 +12 -x2 +x23 2? +x2ε(x) =e×? 1-x2 +x23 +12 x24 -x33 +x49 +x2ε(x) =e×? 1-x2 +1124
x2? +x2ε(x). Si l"on prolongegpar continuité en0en posantg(0) =e, alors la formule ci-dessus montre queg est dérivable en0, et que g ?(0) =-e2

3. Le DL de sinus à l"ordre4en0s"écrit

sinx=x-x33! +x4ε(x)

(notez bien que le terme de degré4est nul, comme tous les termes de degré pair d"ailleurs, ce qui

provient du fait que sinus est une fonction impaire). Quandxest au voisinage de0,sinxest lui

aussi au voisinage de0, donc on doit également considérer le DL deexà l"ordre4en0, à savoir :

e h= 1 +h+h22! +h33! +h44! +h4ε(h) = 1 +h+h22 +h36 +h424 +h4ε(h). 4

Il s"agit maintenant de composer les deux DL :

e sinx= 1 +? x-x36 +12 x-x36 2 +16 x-x36 3 +124
x-x36 4 +x4ε(x) = 1 +x-x36 +12 x 2-x33 +16 (x3+···) +124 (x4+···) +x4ε(x) = 1 +x+x22quotesdbs_dbs14.pdfusesText_20
[PDF] exercices corrigés développement limité pdf

[PDF] exercices corrigés diagonalisation trigonalisation matrices pdf

[PDF] exercices corrigés dimensionnement gsm

[PDF] exercices corrigés dimensionnement gsm pdf

[PDF] exercices corrigés droit des sociétés

[PDF] exercices corrigés droit des sociétés ohada pdf

[PDF] exercices corrigés echantillonnage

[PDF] exercices corrigés economie internationale

[PDF] exercices corrigés en chimie

[PDF] exercices corrigés en chimie de solution pdf

[PDF] exercices corrigés en chimie générale

[PDF] exercices corrigés en chimie organique

[PDF] exercices corrigés en mécanique

[PDF] exercices corrigés en mécanique des fluides pdf

[PDF] exercices corrigés en mecanique du point materiel