[PDF] BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2021





Previous PDF Next PDF



Notice relative - AUX MODALITÉS - DADMISSION

Les résultats de l'admissibilité seront publiés le 8 juin 2022 à 16 h sur le site concours-commun-inp.fr. Pour les Écoles en banque se référer à la page 



Notice relative - AUX MODALITÉS - DADMISSION

Les résultats sont publiés sur le site internet : concours-commun-inp.fr. ORAL : Convocation. Les convocations à l'épreuve orale sont envoyées individuellement 



FILIÈRE PSI - SESSION 2021 - CONCOURS COMMUN INP

27 sept. 2021 I - RESULTATS. Partiellement à toutes les épreuves ... IV - MOYENNE DES NOTES OBTENUES AUX ÉPREUVES ORALES. ANNÉE. MATH. PHYS-CHIMIE.



oral TP SII.pdf

Interpréter les résultats d'une expérimentation et d'une simulation ;. ? Modifier ou compléter un modèle numérique à partir de l'observation ou.



1.1. Nature de lépreuve orale 1.2. Rappels sur le déroulement de l

candidat portera sur la démarche à suivre l'obtention du résultat et son regard En plus de produire un oral d'une lenteur peu tolérable



BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2021

http://ccp.scei-concours.fr 2003-2014 des oraux CCP-MP Éd. Ress. Pédag. Ouv. ... Par symétrie de la relation d'équivalence





Oral Physique-Chimie-5

travail du candidat portera sur la démarche à suivre l'obtention du résultat et son regard critique. Le candidat devra mobiliser ses connaissances



Résultats des élections professionnelles pour les CAP et les CCP

Résultats des élections professionnelles pour les CAP et les CCP dans la fonction publique de l'État en 2018. 360 commissions administratives paritaires.



1/ Déroulement de lépreuve 2/ Remarques générales sur loral 2018

Ce rapport vient clôturer l'épreuve orale de mathématiques 2018 du CCP filière PSI qui Une demi-heure de présentation au tableau des résultats obtenus.



[PDF] BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2022

Chaque sujet proposé est constitué de deux exercices : — un exercice sur 8 points issu de la banque publique accessible sur le site http://ccp scei-concours



MON DOSSIER - CCINP

Mon Dossier Inscription au concours CCINP · Livrable TIPE · Écrits : Convocation · Résultats d'admissibilité · Convocation dates et accueil oral



[PDF] EPREUVES ORALES - CCP - Concours Communs Polytechniques

Le premier exercice que nous appelons exercice majeur est évalué sur 14 points Il comporte quatre ou cinq questions de difficulté croissante Des résultats 



[PDF] Conseils pour les oraux - CPGE

(http://www odlt fr/Oraux_2015 pdf pour les oraux 2015 et http://beos prepas résultats de les commenter (un champ de l'ordre du Tesla est intense 



[PDF] Physique 24 jours pour préparer loral du concours CCINP (ex CCP)

Réussir ses oraux aux concours des Grandes Écoles nécessite une bonne organisation d?éventuelles prédictions de résultats du choix des paramètres



[PDF] Mathématiques 24 jours pour préparer loral du concours CCINP (ex

Ce manuel a pour but de vous préparer efficacement aux oraux de mathématiques du Concours Commun INP (ex CCP) Si les exercices choisis ici sont tous issus de 



Centrale-Supélec Bienvenue

Epreuves orales Déroulement (lieux de passage hébergement etc ) Réservation d'hébergement · Horaires de passage · Résultats individuels · Résultats par 



Oraux CCP - Forum FS Generation

c'est un pdf qui explique le "déroulement" du concours La page 12 concerne les oraux : pour les PSI il peut y avoir des questions de chimie 



[PDF] Les oraux des CCP filière MP de la session 2017 se sont déroulés

- Globalement les candidats manquent de recul sur le cours Les résultats importants sont rarement synthétisés et hiérarchisés La connaissance du cours reste 



[PDF] MODALITES DADMISSION - Eureka Study

Cette notice (ainsi que les rapports sujets résultats et statistiques) est disponible sur le site internet du concours : http://ccp scei-concours fr 

:

CONCOURS COMMUN INP

FILIÈRE MP

BANQUE

ÉPREUVE ORALE

DE MATHÉMATIQUES

SESSION 2021

avec corrigés

V. Bellecave, J.-L. Artigue, A. Begyn, P. Berger, M. Boukhobza, F. Bernard, J.-P. Bourgade, J.Y. Boyer,

S. Busson, S. Calmet, A. Calvez, D. Clenet, J. Esteban, M. Fructus, R. Gabay, B. Harington, J.-P. Keller,

M.-F. Lallemand, A. Leprince, A. Lluel, O. Lopez, J.-P. Logé, Emmanuel Magnin, S. Moinier,

P.-L. Morien, S.Mouez, S. Pellerin, V. Rayssiguier, S. Rigal, A. Rigny, K. Tari, A. Walbron, A. Warin

2014, CC BY-NC-SA 3.0 FR

Dernière mise à jour : le 22/05/21

Banque épreuve orale de mathématiques session 2021, CCINP, filière MP Mise à jour : 22/05/21

Introduction

L"épreuve orale de mathématiques du CCINP, filière MP, se déroule de la manière suivante :

25mn de préparatio nsur table.

25mn de passage à l"oral.

Chaque sujet proposé est constitué de deux exercices :

un exercice sur 8 p ointsis sude la banque publique accessible sur le site http://ccp.scei-concours.fr

un exercice sur 12 p oints. Les deux exercices proposés portent sur des domaines différents. Ce document contient les112 exercices de la banque pour la session 2021:

58 exercices d"analyse ( exercice 1 à exercice 58).

36 exercices d"algèbre (exercice 59 à exercice 94).

18 exercices de probabilités (exercice 95 à exercice 112).

Dans l"optique d"aider les futurs candidats à se préparer au mieux aux oraux du CCINP, chaque exercice de la

banque est proposé, dans ce document, avec un corrigé. Il se peut que des mises à jour aient lieu en cours d"année scolaire.

Cela dit, il ne s"agira, si tel est le cas, que de mises à jour mineures : reformulation de certaines questions pour

plus de clarté, relevé d"éventuelles erreurs, suppression éventuelle de questions ou d"exercices.

Nous vous conseillons donc de vérifier, en cours d"année, en vous connectant sur le site : http://ccp.scei-concours.fr

si une nouvelle version a été mise en ligne, la date de la dernière mise à jour se trouvera en haut de chaque page.

Si tel est le cas, les exercices concernés seront signalés dans le présent document, page 3.

Remerciements à David DELAUNAY pour l"autorisation de libre utilisation du fichier source de ses corrigés des

exercices de l"ancienne banque, diffusés sur son sitehttp://mp.cpgedupuydelome.fr NB : la présente banque intègre des éléments issus des publications suivantes : A. Antibi, L. d"Estampes et interrogateurs, Banque d"exercices de mathématiques pour le programme

2003-2014 des oraux CCP-MP,Éd. Ress. Pédag. Ouv. INPT,0701(2013) 120 exercices.

http://pedagotech.inp-toulouse.fr/130701 D. Delaunay, Prépas Dupuy de Lôme, cours et exercices corrigés MPSI - MP, 2014. http://mp.cpgedupuydelome.fr L"équipe des examinateurs de l"oral de mathématiques du CCINP, filière MP.

Contact: Valérie BELLECAVE, coordonnatrice

des oraux de mathématiques du CCINP, filière MP. vbellecave@gmail.com

CC BY-NC-SA 3.0 FR Page 2

Banque épreuve orale de mathématiques session 2021, CCINP, filière MP Mise à jour : 22/05/21

MISES À JOUR :

Les mises à jour signalées sont des mises à jour par rapport à la dernière version publiée sur le site du concours

commun INP, en date du 09/10/20. mise à jour du 29/09/20: Exercice 28: Corrigé question 2. cas oùa61remplacer le corrigé par :

8x2[e;+1[,h(x)>1x

a.

Orx7!1x

anon intégrable sur[e;+1[.(fonction de Riemann aveca61) Donc, par règle de minoration pour les fonctions positives,hnon intégrable sur[e;+1[ Donc, par règle d"équivalence pour les fonctions positives,fnon intégrable sur[e;+1[.

Donc,fnon intégrable sur]0;+1[.

mise à jour du 21/05/21: simplement des dates modifiées. mise à jour du 22/05/21: Encore une date modifiée en entête des pages.

Exercice 78 corrigé question 1.:

Première ligne : Soitu2 L(E)tel que8(x;y)2E2,(u(x)ju(y)) = (xjy)remplacée par :

Soitu2 L(E)tel que8(x;y)2E2,jju(x)jj=jjxjj.

Exercice 25 énoncé question 2.:

Pour toutn2N, poseun=Z

+1

0dt1 +t2+tnet. Calculerlimn!+1unremplacé par :

Pour toutn2N,onposeun=Z

+1

0dt1 +t2+tnet. Calculerlimn!+1un.

Exercice 61 corrigé 2. ligne 4:

Donc,8(i;j)2(J1;nK)2,jci;jj6nX

k=1jai;kj:j(bk;jj6nX k=1kAkkBk=nkAkkBk. remplacé par : Donc,

8(i;j)2(J1;nK)2,jci;jj6nX

k=1jai;kj:jbk;jj6nX k=1kAkkBk=nkAkkBk.

Exercice 84 corrigé 2. ligne 1:

z= 0n"est passoultionde l"équationzn= 1remplacé par : z= 0n"est pas solution de l"équationzn= 1.

CC BY-NC-SA 3.0 FR Page 3

Banque épreuve orale de mathématiques session 2021, CCINP, filière MP Mise à jour : 22/05/21

BANQUE ANALYSE

EXERCICE 1 analyse

Énoncé exercice 1

1.

On considère deux suites n umériques(un)n2Net(vn)n2Ntelles que(vn)n2Nest non nulle à partir d"un

certain rang etuns+1vn. Démontrer queunetvnsont de même signe à partir d"un certain rang. 2. Déterminer le signe, au v oisinagede l"infini, de : un=sh1n tan1n

Corrigé exercice 1

1.

P arh ypothèse,9N02N=8n2N;n>N0=)vn6= 0.

Ainsi la suiteunv

n est définie à partir du rangN0.

De plus, commeuns+1vn, on alimn!+1u

nv n= 1.

Alors,8" >0,9N2N=N>N0et8n2N;n>N=)u

nv n16". (1)

Prenons"=12

. Fixons un entierNvérifiant(1).

Ainsi,8n2N;n>N=)u

nv n1612

C"est-à-dire,8n2N;n>N=) 12

6unv n1612

On en déduit que8n2N;n>N=)unv

n>12

Et donc,8n2N;n>N=)unv

n>0. Ce qui implique queunetvnsont de même signe à partir du rangN. 2.

Au v oisinagede +1, sh(1n

) =1n +16n3+o1n 3 ettan1n =1n +13n3+o1n 3 . Doncuns+116n3. On en déduit, d"après 1., qu"à partir d"un certain rang,unest négatif.

CC BY-NC-SA 3.0 FR Page 4

Banque épreuve orale de mathématiques session 2021, CCINP, filière MP Mise à jour : 22/05/21

EXERCICE 2 analyse

Énoncé exercice 2

On posef(x) =3x+ 7(x+ 1)2.

1.

Décomp oserf(x)en éléments simples.

2.

En déduire que fest développable en série entière sur un intervalle du type]r;r[(oùr >0).

Préciser ce développement en série entière et déterminer, en le justifiant, le domaine de validitéDde ce

développement en série entière. 3. (a)

Soit Panxnune série entière de rayonR >0.

On pose, pour toutx2]R;R[,g(x) =+1X

n=0a nxn. Exprimer, pour tout entierp, en le prouvant,apen fonction deg(p)(0). (b) En déduire le dév eloppementlimité de fà l"ordre 3 au voisinage de 0.

Corrigé exercice 2

1. En utilisan tles métho deshabituel lesde décomp ositionen élémen tssimple s,on trouv e: f(x) =3x+ 1+4(x+ 1)2. 2.

D"après le cours, x7!1x+ 1etx7!1(x+ 1)2sont développables en série entière à l"origine.

De plus, on a8x2]1;1[,11 +x=+1P

n=0(1)nxn.

Et,8x2]1;1[,1(1 +x)2=+1P

n=1(1)n+1nxn1( obtenu par dérivation du développement précédent).

On en déduit quefest développable en série entière en tant que somme de deux fonctions développables en

série entière.

Et8x2]1;1[,f(x) = 3+1P

n=0(1)nxn+ 4+1P n=0(1)n(n+ 1)xn.

C"est-à-dire :8x2]1;1[,f(x) =+1X

n=0(4n+ 7)(1)nxn. NotonsDle domaine de validité du développement en série entière def.

D"après ce qui précéde,]1;1[D.

NotonsRle rayon de convergence de la série entièreX(4n+ 7)(1)nxn.

D"après ce qui précédeR>1.

Posons, pour tout entier natureln,an= (4n+ 7)(1)n. Pourx= 1etx=1,limn!+1janxnj= +1doncX(4n+ 7)(1)nxndiverge grossièrement.

DoncR61,162Det162D.

On en déduit queD= ]1;1[.

3. (a)

Soit Panxnune série entière de rayonR >0.

On pose, pour toutx2]R;R[,g(x) =+1X

n=0a nxn.

D"après le cours,gest de classeC1sur]R;R[.

De plus,8x2]R;R[,

g

0(x) =+1X

n=1na nxn1=+1X n=0(n+ 1)an+1xn g

00(x) =+1X

n=1n(n+ 1)an+1xn1=+1X n=0(n+ 1)(n+ 2)an+2xn.

CC BY-NC-SA 3.0 FR Page 5

Banque épreuve orale de mathématiques session 2021, CCINP, filière MP Mise à jour : 22/05/21

et, par récurrence, on a :

8p2N,8x2]R;R[,g(p)(x) =+1X

n=0(n+ 1)(n+ 2):::(n+p)an+pxn=+1X n=0(n+p)!n!an+pxn.

Ainsi, pour toutp2N,g(p)(0) =p!ap.

C"est-à-dire, pour toutp2N,ap=g(p)(0)p!.

(b)fest de classeC1sur]1;1[. Donc d"après la formule de Taylor-Young, au voisinage de0,f(x) =3X p=0f (p)(0)p!xp+o(x3). (*)

Or, d"après 3.(a), pour tout entierp,f(p)(0)p!est aussi la valeur dupièmecoefficient du développement en

série entière def. Donc, d"après 2., pour tout entierp,f(p)(0)p!= (4p+ 7)(1)p. (**) Ainsi, d"après (*) et (**), au voisinage de0,f(x) =3X p=0(4p+ 7)(1)pxp+o(x3). C"est-à-dire, au voisinage de0,f(x) = 711x+ 15x219x3+o(x3).

CC BY-NC-SA 3.0 FR Page 6

Banque épreuve orale de mathématiques session 2021, CCINP, filière MP Mise à jour : 22/05/21

EXERCICE 3 analyse

Énoncé exercice 3

1.

On p oseg(x) = e2xeth(x) =11 +x.

Calculer, pour tout entier naturelk, la dérivée d"ordrekdes fonctionsgethsur leurs ensembles de

définitions respectifs. 2.

On p osef(x) =e2x1 +x.

En utilisant la formule de Leibniz concernant la dérivéenièmed"un produit de fonctions, déterminer, pour

tout entier naturelnet pour toutx2Rnf1g, la valeur def(n)(x). 3.

Démon trer,dans le cas g énéral,la form ulede Leibniz, utilisée dans la question précéden te.

Corrigé exercice 3

1.gest de classeC1surRethest de classeC1surRnf1g.

On prouve, par récurrence, que :

8x2R,g(k)(x) = 2ke2xet8x2Rnf1g,h(k)(x) =(1)kk!(1 +x)k+1.

2.gethsont de classeC1surRnf1gdonc, d"après la formule de Leibniz,fest de classeC1surRnf1g

et8x2Rnf1g: f (n)(x) =nX k=0 n k g (nk)(x)h(k)(x) =nX k=0 n k 2 nke2x(1)kk!(1 +x)k+1=n!e2xnX k=0(1)k2nk(nk)!(1 +x)k+1. 3.

Notons (Pn)la propriété :

Sif:I!Retg:I!Rsontnfois dérivables surIalors,fgestnfois dérivable surIet :

8x2I,(fg)(n)(x) =nX

k=0 n k f (nk)(x)g(k)(x).

Prouvons que(Pn)est vraie par récurrence surn.

La propriété est vraie pourn= 0et pourn= 1(dérivée d"un produit).

Supposons la propriété vraie au rangn>0.

Soitf:I!Retg:I!Rdeux fonctionsn+ 1fois dérivables surI.

Les fonctionsfetgsont, en particulier,nfois dérivables surIet donc par hypothèse de récurrence la

fonctionfgl"est aussi avec8x2I,(fg)(n)(x) =nX k=0 n k f (nk)(x)g(k)(x). Pour toutk2 f0;:::;ng, les fonctionsf(nk)etg(k)sont dérivables surIdonc par opération sur les fonctions dérivables, la fonction(fg)(n)est encore dérivable surI. Ainsi la fonctionfgest(n+ 1)fois dérivable et :

8x2I,(fg)(n+1)(x) =nX

k=0 n k f(n+1k)(x)g(k)(x) +f(nk)(x)g(k+1)(x)

En décomposant la somme en deux et en procédant à un décalage d"indice sur la deuxième somme, on

obtient :8x2I,(fg)(n+1)(x) =nX k=0 n k f (n+1k)(x)g(k)(x) +n+1X k=1 n k1 f (n+1k)(x)g(k)(x).

C"est-à-dire

(fg)(n+1)(x) =nX k=1 n k +n k1 f (n+1k)(x)g(k)(x) +n 0 f (n+1)(x)g(0)(x) +n n f (0)(x)g(n+1)(x).

Or, en utilisant le triangle de Pascal, on a

n k +n k1 =n+ 1 k

On remarque également que

n 0 = 1 =n+ 1 0 etn n = 1 =n+ 1 n+ 1

On en déduit que(fg)(n+1)(x) =n+1X

k=0 n+ 1 k f (n+1k)(x)g(k)(x).

Donc(Pn+1)est vraie.

CC BY-NC-SA 3.0 FR Page 7

Banque épreuve orale de mathématiques session 2021, CCINP, filière MP Mise à jour : 22/05/21

EXERCICE 4 analyse

Énoncé exercice 4

1. Énoncer le théorème des accroisse mentsfinis. 2.

Soit f: [a;b]!Ret soitx02]a;b[.

On suppose quefest continue sur[a;b]et quefest dérivable sur]a;x0[et sur]x0;b[.

Démontrer que, sif0admet une limite finie enx0, alorsfest dérivable enx0etf0(x0) = limx!x0f0(x).

3. Prouv erque l"implication : ( fest dérivable enx0)=)(f0admet une limite finie enx0) est fausse. Indication: on pourra considérer la fonctiongdéfinie par :g(x) =x2sin1x six6= 0etg(0) = 0.

Corrigé exercice 4

1.

Théorème des accroissemen tsfinis :

Soitf: [a;b]!R.

On suppose quefest continue sur[a;b]et dérivable sur]a;b[.

Alors9c2]a;b[tel quef(b)f(a) =f0(c)(ba).

2.

On p osel= limx!x0f0(x).

Soith6= 0tel quex0+h2[a;b].

En appliquant le théorème des accroissements finis, à la fonctionf, entrex0etx0+h, on peut affirmer

qu"il existechstrictement compris entrex0etx0+htel quef(x0+h)f(x0) =f0(ch)h.

Quandh!0(avech6= 0), on a, par encadrement,ch!x0.

Donclimh!01h

(f(x0+h)f(x0)) = limh!0f0(ch) = limx!x0f0(x) =l. On en déduit quefest dérivable enx0etf0(x0) =l. 3. La fonction gproposée dans l"indication est évidemment dérivable sur]1;0[et]0;+1[. gest également dérivable en 0 car1h (g(h)g(0)) =hsin1h

Orlimh!0h6=0hsin1h

= 0carjhsin1h j6jhj.

Donc,gest dérivable en0etg0(0) = 0.

Cependant,8x2Rnf0g,g0(x) = 2xsin1x

cos1x

2xsin1x

x!00(carj2xsin(1x )j62jxj), maisx7!cos1x n"admet pas de limite en 0.

Doncg0n"a pas de limite en0.

CC BY-NC-SA 3.0 FR Page 8

Banque épreuve orale de mathématiques session 2021, CCINP, filière MP Mise à jour : 22/05/21

EXERCICE 5 analyse

quotesdbs_dbs43.pdfusesText_43
[PDF] entpe admission

[PDF] ordenadores definicion

[PDF] ordenadores de escritorio

[PDF] ordenadores baratos

[PDF] ordenadores con m

[PDF] ordenadores portatiles

[PDF] ordenadores wikipedia

[PDF] ordenadores informatica

[PDF] oferta cpu sin monitor

[PDF] decouverte du poste informatique

[PDF] mary stuart

[PDF] reset ti 82 advanced

[PDF] ti-82 stats.fr manuel d utilisation

[PDF] ordonnance judiciaire

[PDF] ti 82 stats.fr loi normale