[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices





Previous PDF Next PDF



Matrices inversibles

Remarque : • La notion de matrice inversible n'a de sens que pour des matrices carrées. • Une matrice inversible admet un unique inverse :.



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 12 – Soit A et B deux matrices carrées de même ordre on suppose que la matrice. AB est inversible d'inverse la matrice C. Montrer alors que B est 



Feuille dexercices n?18 : Inversion de matrices

2 mai 2012 Montrer que P est inversible et déterminer son inverse. Calculer P-1AP et en déduire les puissances de la matrice A. 1. Page 2 ...



fic00056.pdf

Démontrer que A est diagonalisable et déterminer une matrice D diagonale et une matrice P inversible telles A = PDP?1. 3. Donner en le justifiant 



Rappel. Le polynôme caractéristique dune matrice carrée A est det

17 déc. 2012 Les valeurs propre d'une matrice carrée sont les racines de ... 1. la matrice inverse A-1 : Puisque A2 - 5A - 2I = 0 on a.



les matrices sur Exo7

C'est une matrice inversible et son inverse est elle-même par l'égalité InIn = In. • La matrice nulle 0n de taille n × n n'est pas inversible.



MATRICES

Les nombres sont appelés les coefficients de la matrice. Définition : Une matrice carrée A de taille n est une matrice inversible s'il existe une.



fic00054.pdf

En déduire que A est inversible et donner son inverse en fonction de. A. Correction ?. [002569]. Exercice 8. Soit A une matrice carrée d'ordre n 



Cours 3: Inversion des matrices dans la pratique

Il existe un critère tres pratique pour savoir si une matrice est inversible. Le fondement de ce critère ne rentre pas dans le cadre de ce cours 



Annexe 3 : Inversion de matrices par la méthode du pivot de Gauss

Pour calculer la matrice inverse d'une matrice inversible M : On présente le calcul en deux colonnes : • Dans la colonne de gauche on applique les opérations 



[PDF] Cours 3: Inversion des matrices dans la pratique

Inverse d'une matrice Critère d'inversibilité : le déterminant 2 Pivot de Gauss sur les matrices But de l'algorithme Présentation de la méthode



[PDF] Inverse dune matrice carrée - Christine Nazaret

qui suit nous définissons la notion de matrice inverse d'une matrice carrée et donnons une méthode pour la calculer (lorsqu'elle existe!) C Nazaret



[PDF] Matrices - Exo7 - Cours de mathématiques

Définition 1 • Une matrice A est un tableau rectangulaire d'éléments de • Elle est dite de taille n × p si le tableau possède n lignes et p colonnes



[PDF] MATRICES - maths et tiques

Définition : Une matrice carrée A de taille n est une matrice inversible s'il existe une matrice B telle que A x B = B x A = In La matrice B notée A-1 est 



[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

1) Montrer en appliquant les algorithmes du cours que M est inversible Préciser la matrice M-1 ainsi que la décomposition de M-1 comme produit de matrices 



[PDF] LES DÉTERMINANTS DE MATRICES

1- Rappel - Définition et composantes d'une matrice 3- Calcul du déterminant pour une matrice



[PDF] Calcul matriciel

8 nov 2011 · Deux matrices A et B de Mn sont dites semblables si et seulement si il existe une matrice inversible P ? Mn telle que : B = P?1AP Le 



[PDF] inversion de matrices - Normale Sup

23 mar 2011 · Si MN ? Mn(R)2 sont deux matrices inversibles le produit MN est inversible et (MN)?1 = N?1M?1 • Si M est une matrice inversible Mk est 



[PDF] Méthode de Gauss-Jordan Calcul de linverse dune matrice

Calcul de l'inverse d'une matrice Méthodes numériques 2003/2004 - D Pastre licence de mathématiques et licence MASS 1 Méthode de Gauss-Jordan



[PDF] Méthode du pivot de Gauss pour inverser une matrice

Elles « marchent » pour des matrices rectangulaires ou carrées inverser des matrices carrées (la notion d'inverse de matrice ne marche que pour les

  • Comment montrer qu'une matrice 3x3 est inversible ?

    Méthode n? : Si A est une matrice triangulaire, A est inversible si et seulement si ses coefficients diagonaux sont tous non nuls. Méthode n? : Une matrice A est inversible si et seulement si la famille formée par ses vecteurs colonnes est libre.
  • Comment calculer une matrice inverse 3x3 ?

    Pour cela, multipliez M et M-1. La théorie veut que : M x M-1 = M-1 x M = I, I étant la matrice identité, c'est-à-dire une matrice dans laquelle la diagonale est constituée de 1, les autres valeurs étant des 0.
  • Comment montrer que la matrice est inversible ?

    Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
  • On résout ( S ) par la méthode du pivot de Gauss. On a donc pour toutes matrices X et Y de M 3 , 1 ( R ) l'équivalence A X = Y ? X = A ? Y . On a donc pour toute matrice Y de M 3 , 1 ( R ) , Y = A A ? Y on en déduit A A ? = I 3 . De même pour toute matrice X de M 3 , 1 ( R ) , X = A ? A X et donc A ? A = I 3 .
Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercices Corriges

Matrices

Exercice 1{Considerons les matrices a coecients reels :

A= 2 1

2 1! ; B= 1 2 24!
C=0 B @1 1 2 1 0 1 11 01 C

A; D=0

B @11 1 1 0 1

0 1 01

C

A; E= 11 1

1 0 1!

Si elles ont un sens, calculer les matricesAB,BA,CD,DC,AE,CE.

Exercice 2{(extrait partiel novembre 2011)

On considere les matrices a coecients reels :

A= 1 1

1 1!

B= 431

2 1 1!

C= 1 2

12! Calculer, s'ils ont un sens, les produitsAB;BA;AC;CA;B2. Exercice 3{On considere les matrices a coecients reels :

A= 1 3

2 4!

B= 431

2 1 1!

C= 43 2 1!

1) Calculer s'ils ont un sens les produitsAB;BA;AC;CA;BC;CB;B2.

2) En deduire, sans plus de calcul, queAetCsont inversibles et preciser leurs inverses.

Exercice 4{SoitAla matrice deM2(R) etBla matrice deM2;3(R) denies par :

A= 4 3

1 1! ; B= 1 0 2 1 11! Si elles ont un sens, calculer les matricesAB,BA,A2,B2etA+ 2Id2.

Exercice 5{SoitA;B;Cles matrices :

A= 22 0

4 22!

2M2;3(R); B=0

B @1 1 1 2 131
C

A2M3;2(R); C= 11

1 2!

2M2;2(R)

Determiner les produits denis 2 a 2 de ces trois matrices. Exercice 6{Ti;j() etant la matrice elementaire qui correspond a ajouter a la ligneile produit parde la ligne j, preciser la matriceT2;1(12 ) deM2;2(R), puis la matriceT1;2(2)T2;1(12 1 Exercice 7{1) Preciser les matrices elementaires deM3;3(R) : D

2(2); T3;2(3); T2;1(2):

2) Calculer la matriceA=T3;2(3)D2(2)T2;1(2).

3) DonnerA1sous forme de produit de matrices elementaires. Puis, calculerA1.

Exercice 8{Appliquer avec precision aux matricesMetNsuivantes l'algorithme du cours qui determine si une matrice est inversible et donne dans ce cas son inverse : M= 23 11!

2M2;2(R)et N= 23

46!

2M2;2(R):

Exercice 9{(extrait partiel novembre 2011)

1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et preciser

son inverse :

A= 1 2

3 4!

2) Puis, donner une expression deA1et deAcomme produit de matrices elementaires.

Exercice 10{1) Appliquer avec precision l'algorithme du cours pour inverser la matrice : M= 11 23!

2M2;2(R):

2 ) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

Exercice 11{) Appliquer avec precision l'algorithme du cours pour inverser la matrice :

M= 2 1

3 2!

2M2;2(R):

Preciser une expression deM1, puis deMcomme produit de matrices elementaires. Exercice 12{SoitAetBdeux matrices carrees de m^eme ordre, on suppose que la matrice ABest inversible d'inverse la matriceC. Montrer alors queBest inversible et preciserA1.

Exercice 13{(extrait partiel novembre 2011)

SoitXetYdeux matrices carrees non nulles de m^eme taille a coecients reels, montrer que siXY= 0, les matricesXetYne sont pas inversibles.

Exercice 14{SoitM=0

B @2 4 1 2 5 1

1 2 11

C A.

1) Montrer en appliquant les algorithmes du cours queMest inversible. Preciser la matrice

M

1ainsi que la decomposition deM1comme produit de matrices elementaires.

2

2) En deduire une decomposition deMcomme produit de matrices elementaires.

3) Montrer que nous avons aussiM=T2;3(1)T1;3(1)T3;1(1)T2;1(1)T1;2(2).

4) En deduire une deuxieme expression deM1comme produit de matrices elementaires.

5) Calculer det(M) et retrouver la valeur deM1en utilisant la formule d'inversion donnee

dans le cours.

Exercice 15{(extrait partiel novembre 2009)

1) Appliquer avec precision l'algorithme du cours pour determiner l'inverseM1de la matrice :

M=0 B @1 2 3 0 1 2

0 4 61

C

A2M3;3(R):

Quelle est la valeur deM1?

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Deduire de la question 1 une matriceXdeM3;3(R)telle que :

2XM=0 B @1 0 0 0 1 0 02 11 C A: Exercice 16{1) Appliquer avec precision l'algorithme du cours pour determiner l'inverse M

1de la matrice :

M=0 B @1 2 3 0 1 1

0 2 31

C

A2M3;3(R):

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Verier le calcul en eectuant les calculs des matricesMM1etM1M.

Exercice 17{SoitMla matrice deM3(R) denie par :

M=0 B @1 01 2 3 4

0 1 11

C A:

1) Calculer le determinant deM, sa comatrice et l'inverse deM.

2) Determiner l'inverse deMsous forme de produit de matrices elementaires. EcrireMcomme

produit de matrices elementaires.

3) Resoudre a l'aide de l'inverse deMle systeme suivant oumest un reel xe :

(m)2 6 4x 1x3=m

2x1+ 3x2+ 4x3= 1

+x2+x3= 2m: 3

Correction de l'exercice 1 :

Le lecteur veriera que :

AB= 0 0

0 0! ; BA= 6 3 126!
CD=0 B @0 1 2 1 0 1 21 01
C

A; DC=0

B @123 2 0 2

1 0 11

C

A; AE= 12 3

12 3! Le produitCEn'a pas de sens car la taille des colonnes (a savoir 2) deEest dierent de la taille des lignes (a savoir 3) deC.

Correction de l'exercice 2 :

On trouve :

AB= 22 0

22 0!

AC= 0 0

2 0!

CA= 3 3

33!

Les deux autres produitsB2etBAn'ont pas de sens.

Correction de l'exercice 3 :

1)

AB= 2 0 2

02 2! BAn'a pas de sens car la taille des lignes deBn'est pas egale a celle des colonnes deA.

AC= 2 0

02! =2Id2:

CA= 2 0

02! =2Id2:

CB= 22157

10 7 3!

BCn'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deC. B

2n'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deB.

2) Nous avons :AC=CA=2Id2, nous en deduisons :

A(12

C) = (12

C)A= Id2:

Il en resulte que la matriceAest inversible, d'inverse : A 1=12

C= 232

112
4

De m^eme :

(12

A)C=C(12

A) = Id2:

Il en resulte que la matriceCest inversible, d'inverse : C 1=12 A= 12 32
12!

Correction de l'exercice 4 :

AB= 7 311

2 13!

La matriceBAn'a pas de sens.

A

2=AA= 139

32!

La matriceB2n'a pas de sens.

A+ 2Id2= 4 3

1 1! + 2 1 0 0 1! = 2 3 1 3!

Correction de l'exercice 5 :

AB= 02

4 14! ; BA=0 B @6 02 10 24

108 61

C

A; CA= 24 2

10 24!

BC=0 B @2 1 3 3 271
C

A; C2= 03

3 3!

Les matricesAC,CB,A2etB2ne sont pas denis.

Correction de l'exercice 6 :

T

2;1(12

) =T2;1(12 )I2=T2;1(12 ) 1 0 0 1! = 1 0 12 1! De m^eme, en utilisant les proprietes des actions a gauche par les matrices elementaires, on obtient : T

1;2(2)T2;1(12

) =T1;2(2) 1 0 12 1! = 02 12 1!

Correction de l'exercice 7 :

1.1) 5 D

2(2) =D2(2)I3=D2(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 02 0

0 0 11

C A: T

3;2(3) =T3;2(3)I3=T3;2(3)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 0 1 0

0 3 11

C A: T

2;1(2) =T2;1(2)I3=T2;1(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 2 1 0

0 0 11

C A: 1.2)

A=T3;2(3)D2(2)T2;1(2) =T3;2(3)D2(2)0

B @1 0 0 2 1 0

0 0 11

C A:

A=T3;2(3)0

B @1 0 0 42 0

0 0 11

C A: A=0 B @1 0 0 42 0

126 11

C A: 1.3) 6 A

1= (T3;2(3)D2(2)T2;1(2))1

=T2;1(2)1D2(2)1T3;2(3)1 =T2;1(2)D2((1=2))T3;2(3) =T2;1(2)D2((1=2))T3;2(3)0 B @1 0 0 0 1 0

0 0 11

C A =T2;1(2)D2((1=2))0 B @1 0 0 0 1 0 03 11 C A =T2;1(2)0quotesdbs_dbs28.pdfusesText_34
[PDF] montrer matrice inversible

[PDF] calculer le déterminant d'une matrice

[PDF] inverse matrice 2x2

[PDF] matrice non inversible

[PDF] matrice des cofacteurs

[PDF] inverse d'une matrice pdf

[PDF] calcul matriciel cours et exercices corrigés pdf

[PDF] calcul matriciel determinant

[PDF] cour matrice

[PDF] comment calculer le cout d'un algorithme

[PDF] taux de rendement production trp

[PDF] trp production definition

[PDF] taux de rendement de production

[PDF] calcul trp production

[PDF] trp calcul