[PDF] SERIE DEXERCICES N° 3 : ELECTROCINETIQUE : CIRCUITS





Previous PDF Next PDF



Exercices dÉlectrocinétique Régime transitoire et régime forcé continu

4) Peut-on prévoir le régime permanent sans calcul? Si oui déterminer U



Régimes transitoires du premier ordre Régimes transitoires du Régimes transitoires du premier ordre Régimes transitoires du

12 nov. 2017 4 - Montrer que l'énergie initialement stockée dans la bobine est dissipée par effet Joule dans la résistance. Exercice 3 : Circuit RC à deux ...



Régimes transitoires du deuxième ordre Régimes transitoires du

24 nov. 2017 Exercice 5 : RLC série en régime libre. [oral CCP ♢♢0]. R. C. L. uC. On étudie le circuit ci-contre où le condensateur est initialement ...



TD 3: Circuits linéaires en régime transitoire

DCSM Sup MPSI TD3: Circuits linéaires en régime transitoire. 1. TD 3: Circuits linéaires en régime transitoire. Exercice 1: Circuit (R L) ; Circuit (R



EXERCICES PROBLEMES PHYSIQUE MPSI PCSI PTSI

régime libre tend vers 0 quand t augmente.Au bout d'un certain temps seul subsiste le régime forcé. On appelle régime transitoire le régime représenté par ...



Electricite. Exercices et methodes

régime oscillatoire amorti régime critique pulsation propre coefficient d'amortissement. Les circuits électriques en régime transitoire. 4. Les régimes ...



Circuits en régime transitoire

U/ = - r r + R. E . W Exercice 2. ¥ Préliminaires. Comme l'intensité du courant traversant une bobine est une fonction mathémati-.



Exercices sur les régimes transitoires du 1 ordre

Exercices sur les régimes transitoires du 1 er ordre. Ce document est une Régime transitoire : principe d'un astable avec un circuit 555. (6 pts) ...



Electrocinétique MPSI

MPSI. Exercices 1re année. I Mathématiques MPSI. I Physique MPSI. Nous ... transitoire du circuit RLC on introduit les variables réduites : La pulsation propre ...



Exercices dÉlectrocinétique Régime transitoire et régime forcé continu

2) `A quelles conditions le régime transitoire est-il : du condensateur et I



Régimes transitoires du premier ordre Régimes transitoires du

Nov 12 2017 Régimes transitoires du premier ordre. Exercices d'électronique. Exercice 1 : Circuit RC soumis à un échelon de courant.



TD MPSI

MPSI. THEOREMES DES CIRCUITS LINEAIRES. & REGIMES TRANSITOIRES. Exercice n°1 : Pont de Wheatstone. On considère le circuit connu sous le nom de « pont de.



Electricite. Exercices et methodes

On parle alors de régimes transitoires. Dans un circuit en régime continu les tensions et courants dans le circuit sont en général continus.



Régimes transitoires du deuxième ordre Régimes transitoires du

Nov 24 2017 Figure 2 – Chronogramme de la tension u(t) dans le circuit RLC parallèle. Exercice 3 : Viscosimètre oscillant. 1 Étudions le mouvement de la ...



SERIE DEXERCICES N° 3 : ELECTROCINETIQUE : CIRCUITS

CIRCUITS LINEAIRES EN REGIME TRANSITOIRE. Circuits linéaires du premier ordre. Exercice 1 : intensité dans un circuit inductif.



Electrocinétique MPSI

Méthodes. Exercices résolus. Électrocinétique. Physique. G. ROSSET. MPSI Ces résultats seront utilisés pour l'étude des régimes transitoires au chapitre ...



Physique MPSI PTSI méthodes et exercices

Énoncés des exercices. 26. Du mal à démarrer ? 35. Corrigés des exercices. 37. CHAPITRE 3. RÉGIME TRANSITOIRE DU PREMIER ORDRE. 46. Méthodes à retenir.



Physique Le compagnon MPSI-PTSI

Tests et exercices. 107. Corrigés des exercices. 111. 8. Régime transitoire dans les circuits linéaires. 117. 8.1 Aborder un problème de régime transitoire.



Circuits en régime transitoire

W Exercice 1. ¥ Préliminaires. En régime continu un condensateur se comporte comme un interrupteur ouvert et une bobine comme un interrupteur fermé.

Nathalie Van de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice

Série d'exercices 3 1

SERIE D'EXERCICES N° 3 : ELECTROCINETIQUE :

CIRCUITS LINEAIRES EN REGIME TRANSITOIRE

Circuits linéaires du premier ordre.

Exercice 1 : intensité dans un circuit inductif.

A t = 0 on ferme l'interrupteur. Donner la loi de variation avec le temps de l'intensité du courant qui traverse le générateur.

On donne R = 6000 W , L = 30 mH , E = 6 V .

R L

L

R L

R E Exercice 2 : évolution d'une tension aux bornes d'un condensateur.

A l'instant t = O on ferme l'interrupteur. Décrire la différence de potentiel u(t) aux bornes du condensateur.

Données : R = 10 kW , C = 100 mF , e = 15 V . R R e R C e Exercice 3 : évolution d'une tension aux bornes d'une bobine.

A l'instant t = O on ferme l'interrupteur. Décrire la différence de potentiel u(t) aux bornes de la bobine.

Données : e = 6 V , R = 30 W , L = 100 mH .

R R e R L e Exercice 4 : utilisation du théorème de superposition en régime transitoire. On étudie la charge q(t) du condensateur dans le montage suivant : R q(t) e C h

A l'instant t = 0 , q(0) = q0 .

Evaluer q(t) à l'aide du théorème de superposition. Nathalie Van de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice

Série d'exercices 3 2

Circuits linéaires du second ordre.

Exercice 5 : étude du régime libre d'un circuit (R,L,C) parallèle, principe de dualité. iR iL iC

R L u C

1. Etablir l'équation différentielle vérifiée par u (u étant la grandeur commune, on écrira la loi des noeuds puis les lois d'Ohm).

Réduire cette équation sous sa forme canonique.

Donner l'expression de la pulsation propre w0 en fonction de l'inductance L et la capacité C .

Donner l'expression du facteur de qualité Q en fonction de la conductance G = 1 / R , w0 et C ; puis en fonction de G , w0 et L , puis

en fonction de R , C et L .

Vérifier le principe de dualité entre un dipôle (R,L,C) série et un dipôle (R,L,C) parallèle :

Les équations différentielles ont exactement la même forme, à condition d'établir les correspondances suivantes, dans les deux sens :

tension " intensité maille " noeud inductance " capacité résistance " conductance générateur de tension " générateur de courant court-circuit " circuit ouvert

2. Exprimer u(t) pour R = 10 kW , L = 100 mH , C = 0,1 mF , avec les conditions initiales suivantes : charge du condensateur 1 mC et

valeur absolue de l'intensité dans la bobine 1 mA (voir ci-dessous) : 1 mA 1 mC

Exercice 6 : association (L,C) parallèle soumise à un échelon de courant dans le cas idéal.

iC iL I C u L A l'instant t = 0 on ferme l'interrupteur, le condensateur étant initialement déchargé.

Déterminer u , i

L et iC en fonction du temps.

Nathalie Van de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice

Série d'exercices 3 3

Exercice7 : relaxation apériodique.

On considère le circuit ci-dessous où toutes les capacités valent C = 2 mF , toute les inductances L = 10 mH et la résistance

R = 103 W .

C

C L

R L C E A t = 0 les condensateurs sont déchargés, on ferme l'interrupteur.

Ecrire l'équation différentielle vérifiée par l'intensité du courant i qui traverse le générateur sous sa forme canonique. Exprimer la

pulsation propre w0 et le facteur de qualité Q en fonction de L , C et R .

Calculer Q et montrer que la relaxation est apériodique. Donner l'ordre de grandeur du temps de relaxation.

Exercice 8.

On considère le montage suivant où t = RC = L/R .

L i1

R i

C q i2 K E A t = 0 on ferme l'interrupteur, le condensateur étant initialement déchargé.

1. Etablir l'équation différentielle vérifiée par la charge q(t) (les coefficients de cette équation seront exprimés en fonction de t ).

2. Exprimer les conditions initiales e et dq/dt ; résoudre en q(t).

3. Donner les relations permettant d'en déduire i

2 , i1 et i .

Nathalie Van de Wiele - Physique Sup PCSI - Lycée les Eucalyptus - Nice

Série d'exercices 3 4

Réponses.

Exercice 1.

i = R

E3 ( 1 - exp( - t / t ) ) = 3.10-3 ( 1 - exp ( -9

4. 105 t ) ) .

Exercice 2.

u = 3 e ( 2 + exp (- t / t ) ) = 5 ( 2 + exp ( - 3 t ) ) .

Exercice 3.

u = 3 e exp (- t / t ) = 2 exp ( - 100 t ) ) .

Exercice 4.

q = exp ( - t / t ) [ q0 - C ( e + h R ) ] + C ( e + h R ) .

Exercice 5.

1) 0uuQu200=w+w+&&& où w0 = LC

1 et Q = L

CRGL1 GC 00 =w=w .

2) u = exp ( - 500 t ) ( 10 cos ( 104 t ) + 0,5 sin ( 104 t ) ) .

Exercice 6.

u = I C

L sin ( LC

t ) ; iL = I ( 1 - cos ( LC t ) ) ; iC = I cos ( LC t ) .

Exercice 7. 0idtdi

Q dtid200 22
=w+w+ où w0 = LC

3 et Q = C

L3

R21 . Q = 0,061 < 0,5 et t = 0

Q2 w = R

L = 10 µs .

Exercice 8.

1) 0 qqq=t+t+2&&& . 2) q (t=0) = 0 et q& (t=0) = E / R donc q = )tCR23(sin)CR2t(exp3CE2- . 3) i

2 =q& ; i = )

CqE(R1- ; i1 = i - i2 .

quotesdbs_dbs1.pdfusesText_1
[PDF] exercices repérage dans le plan 5ème

[PDF] exercices représentation des forces

[PDF] exercices reproduction humaine terminale

[PDF] exercices reproduction humaine terminale pdf

[PDF] exercices resolues de cinetique chimique

[PDF] exercices résolus d'électrostatique

[PDF] exercices resolus de mecanique des fluides

[PDF] exercices résolus en macroeconomie

[PDF] exercices résolus sur atomistiques

[PDF] exercices saut en hauteur

[PDF] exercices saut en longueur primaire

[PDF] exercices schema electrique industriel

[PDF] exercices son g ce1

[PDF] exercices spé maths terminale s corrigé

[PDF] exercices statistiques 3ème brevet